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Chapter 1 Set notation and complex
numbers

1.1 Imaginary numbers

Suppose that you are asked to solve the equation

x2 + 1 = 0

Your first response might be to say that there will be two solutions as it is a quadratic equation. Very

quickly you might write down the line

x2 = −1.

At that point you might conclude, correctly, that there are no real solutions to the equation. But what

if we agree that there exists a number x whose square is −1?

Such a number does indeed exist, although it is not a real number. It is known as an imaginary number.

We denote it by i (although some branches of engineering use j instead) and we‘ll assume that the

usual rules for algebraic manipulation apply. Then, since i2 = −1, we also have

(−i)2 = (−1× i)2 = (−1)2 × i2 = 1×−1 = −1.

The equation x2 + 1 = 0 now has two imaginary solutions, namely i and −i.
What about the equations

x2 + 4 = 0 and y2 + 7 = 0?

The first of these has imaginary solutions x = ±2i, since

(±2i)2 + 4 = 4i2 + 4 = −4 + 4 = 0.

Similarly, the second has solutions y = ±i
√

7.

Any non–zero real multiple of i is an imaginary number. The square of an imaginary number is a

negative real number. For example 3i, −20i , −i/5, 0.125i and πi are all imaginary numbers, and

(3i)2 = −9, (−20i)2 = −400, (−i/5)2 = −1/25 and so on.
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CHAP. 1 SET NOTATION AND COMPLEX NUMBERS

1.2 Complex numbers and solutions of quadratic equations

Suppose that you are given this equation to solve:

x2 − 4x+ 5 = 0.

Completing the square and rearranging gives (x− 2)2 = −1; that is, x− 2 = ±i or x = 2± i. These

solutions can also be obtained by applying the familiar quadratic formula.

x =
4±
√

16− 20

2
=

4±
√
−4

2
=

4±
√

4i2

2
= 2±

√
i2 = 2± i.

These solutions are not purely imaginary, although they do involve an imaginary number. The solutions

2+i and 2−i are complex numbers. They have a real part and an imaginary part. For example, the real

part of 2 + i is 2; we write Re(2 + i) = 2. The imaginary part of a complex number is the coefficient

of i, so the imaginary part of 2 + i is 1; we write Im(2 + i) = 1. You may like to show by substitution

that 2 + i and 2− i are indeed solutions of x2 − 4x+ 5 = 0.

. Example 1.1.

i) Consider the complex number 3 + 8i. Re(3 + 8i) = 3 and Im(3 + 8i) = 8.

ii) If z = 1
2
− 5i then Re(z) = 1

2
and Im(z) = −5.

iii) For the purely imaginary number−7i, since−7i = 0−7i, we have Re(−7i) = 0 and Im(−7i) =

−7.

1. For the real number 4 (which can be thought of as the complex number 4 + 0i), Re(4) = 4 and

Im(4) = 0.

If we allow complex numbers as solutions to quadratic equations with real coefficients then every such

quadratic equation will always have solutions, and they will be either both real or both complex.

We can see this in general if we look at the quadratic formula. The solution to the quadratic equation

ax2 + bx+ c = 0 is given by

x =
−b±

√
b2 − 4ac

2a

Whether ax2 +bx+c = 0 has (purely) real or complex roots depends on the expression b2−4ac which

is known as the discriminant of the quadratic.

x is

{
real if b2 − 4ac ≥ 0

complex if b2 − 4ac < 0.
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1.3 Arithmetic with complex numbers

. Example 1.2. The solutions of x2 +6x+25 = 0 must be complex since b2−4ac = 64 < 0. Using

the quadratic formula, the solutions are found to be −3 + 4i and −3− 4i. These complex numbers are

related; they are complex conjugates of each other. This will be examined further in the next section.

1.3 Arithmetic with complex numbers

Complex numbers can be added or multiplied together, subtracted from one another or divided by one

another.

Consider two complex numbers z = a + bi and w = c + di. Here the real part of z is a and the

imaginary part of z is b; the real part of w is c and the imaginary part of w is d.

Addition
z + w = (a+ bi) + (c+ di)

= (a+ c) + (b+ d)i

Rule: Add real parts to real parts and imaginary parts to imaginary parts.

. Example 1.3.

(3− 4i) + (1 + 2i) = 3 + 1 + (−4 + 2)i

= 4− 2i

♦

Substraction
z − w = (a+ bi)− (c+ di)

= (a− c) + (b− d)i

Rule: Subtract real parts from real parts and imaginary parts from imaginary parts.

. Example 1.4.

(3− 4i)− (1 + 2i) = 3− 1 + (−4− 2)i

= 2− 6i

♦

Multiplication
zw = (a+ bi)(c+ di) = ac+ adi+ bci+ (bd)i2

= (ac− bd)i+ (ad+ cb)i

Rule: Expand the brackets in the normal way, remembering that i2 can be simplified to−1, and collect

terms into real and imaginary parts.

3



CHAP. 1 SET NOTATION AND COMPLEX NUMBERS

. Example 1.5.

(3− 4i)(1 + 2i) = 3− 4i+ 6i− 8i2 = 3 + 2i+ 8 = 11 + 2i

♦

To divide one complex number by another we need to know about the complex conjugate.

Definition 1.1. The complex conjugate of the complex number z = a+ib is the complex number

denoted by z, where z = a− ib.

Notice that if z = a+ ib then zz = zz = a2+b2. In particular, zz is always a non-negative real number

and zz = 0 if and only if z = 0. This observation is exactly what we need when dividing one complex

number by another (non–zero) complex number.

. Example 1.6.

i) 3 + 5i = 3− 5i

ii) 2− 7i = 2 + 7i

iii) If z is a real number then z = z. If z is a purely imaginary number then z = −z. For example

3i = −3i.

♦

Division
If w 6= 0 then to find z

w
we multiply both top and bottom by the complex conjugate of w.

z
w

= z
w
z
w

= (a+bi)
(c+di)

(c−di)
(c−di) = ac−adi+cbi−(bd)i2

c2−cdi+cdi−d2i2

= (ac+bd)+(cb−ad)i
c2+d2

= ac+bd
c2+d2

+ cb−ad
c2+d2

i

This process is similar to rationalizing the denominator of a quotient of surds. Multiplying by the

complex conjugate of the divisor produces a real number in the denominator and allows the number to

be written in the form a+ bi.

. Example 1.7.
5−10i
1+2i

= (5−10i)(1−2i)
(1+2i)(1−2i) = 5−20i+20i2

1−2i+2i−4i2

= −15−20i
5

= −3− 4i

♦

Equality
Two complex numbers are equal to each other if and only if both their real and imaginary parts are

equal. In other words, if z = a+ bi and w = c+ di, then z = w if and only if a = c and b = d.
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1.4 The set of complex numbers

1.4 The set of complex numbers

We can think of a real number as a particular type of complex number, one with zero imaginary part.

The complex numbers include real numbers and form a set which contains the set of real numbers and

hence all of the other number sets we have mentioned.

Definition 1.2. The set of complex numbes C is the set of all numbers of the form a +

ib where a and b are real numbers and i2 = −1.

Altematively, we could write

C = {a+ ib|a, b ∈ R, i2 = −1}.

We also have

N ⊂ Z ⊂ Q ⊂ R ⊂ C

The set of complex numbers, like the set of real numbers, is closed under addition, subtraction, multi-

plication and division.

Complex numbers, however, lack an important property of the real numbers.

The set of real numbers is ordered; that is, if we have any two real numbers x and y we can say that

either x > y or x < y or x = y. One of these alternatives will always be true. Because of this property

we are able to represent real numbers on the real number line.

The set of complex numbers is not ordered. Consider the two complex numbers 2 − 3i and −1 + 5i.

Clearly 2− 3i 6= −1 + 5i as neither their real nor their imaginary parts are the same. But it makes no

sense to write 2−3i > −1+5i or 2−3i < −1+5i. It does make sense to write Re(2−3i) > Re(−1+5i)

and Im(2 − 3i) < Im(−1 + 5i) but this is because the real part and the imaginary part of a complex

numbers are both real numbers.

Because the set of complex numbers is not ordered, complex numbers cannot be represented as points

on a line. Instead, complex numbers are represented as points on a plane.

The complex plane
The complex plane or Argand diagram allows complex numbers to be represented graphically. The

horizontal axis in the complex plane is called the real axis. All real numbers lie on the horizontal axis

in the complex plane; positive numbers to the right of the origin, negative numbers to its left. The

vertical axis is known as the imaginary axis. All purely imaginary numbers lie on the vertical axis.

Each point in the complex plane corresponds to a single complex number. This is a little different to

the Cartesian plane used in coordinate geometry, where each point corresponds to an ordered pair of

real numbers. For example:
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CHAP. 1 SET NOTATION AND COMPLEX NUMBERS

1.4.1 The modulus of a complex number

For a real number x, the modulus of x, written as |x|, gives the distance on the real number line from x

to the origin (zero). For a complex number z = a+ bi, the modulus of z, written |z|, gives the distance

in the complex plane from z to the origin.

If z = a+ bi the geometrically, by Pythagoras‘ Theorem

|z|=
√
a2 + b2

(This formula holds in all quadrants of the complex plane.) Alternatively we can express |z| in terms

of z and its complex conjugate. Since zz = (a+ bi)(a− bi) = a2 + b2 we can write |z|=
√
zz.

The modulus of a complex number is a real number and so it makes sense to write something like

|1 + i|< |2 − 3i|; however two complex numbers with the same modulus need not be equal. For

example |4− 3i|= |1 + 2
√

6i|= 5. Note that the modulus is always a positive real number or zero.

The modulus can be used to specify subsets of the set of complex numbers which can be graphed in

the complex plane.

. Example 1.8.

i) {z ∈ C||z|> 2} is the set of complex numbers z such that z is more than 2 units distant from the

origin. The set is represented by the shaded area below, which extends indefinitely.

6



1.4 The set of complex numbers

ii) {z ∈ C|1 ≤ |z|≤ 3} is the set of complex numbers which are between one and three units distant

from the origin.

iii) {z ∈ C||z − 1|< 2}. As with real numbers, |z − 1| is exactly the distance from z to 1. Hence,

this is the set of all complex numbers whose distance from 1 is less than 2. Geometrically, these

are all points in the complex plane that are inside the circle, centre 1, radius 2.

7



CHAP. 1 SET NOTATION AND COMPLEX NUMBERS

iv) {z ∈ C||z + 2 − i|> 1}. Here |z + 2 − i|= |z − (−2 + i)| is the distance from the complex

number z to −2 + i. So this set is the set of all complex numbers whose distance from −2 + i

is greater than one unit. In other words, this is the set of points in the complex plane with are

strictly outside the circle of radius 1 and centre −2 + i.

v) Here is a different type of subset of the complex numbers: z ∈ C|Imz ≤ 0 is the set of all

complex number whose imaginary part is less or equal to zero.

♦

1.4.2 Some properties of the modulus

For all complex numbers z = a+ ib and w = c+ id, we have

1. |zw|= |z||w|,

8



1.4 The set of complex numbers

2. |z/w|= |z|/|w|,

3. |z + w|≤ |z|+|w|,

4. |z − w|≥ |z|−|w|.

To show that (i) is true, we calculate |zw| and |z||w| separately and show they are equal.

|zw| = |(a+ ib) (c+ id)| = |(ac− bd) + i(ad+ bc)|

=
√

(ac− bd)2 + (ad+ bc)2 =
√
a2c2 + b2d2 − 2abcd+ a2d2 + b2c2 + 2abcd

=
√
a2c2 + b2d2 + a2d2 + b2c2

while
|z| |w| =

√
a2 + b2

√
c2 + d2

=
√
a2c2 + b2d2 + a2d2 + b2c2 = |zw|

We will show (iii) algebraically (a geometric argument can also be used, and this is left as an exercise).

Note that since all quantities are non–negative, proving |z + w|≤ |z|+|w| is equivalent to proving

|z + w|2≤ (|z|+|w|)2. Now

|z + w|2 = |(a+ c) + i (b+ d)|2 = (a+ c)2 + (b+ d)2 = a2 + b2 + c2 + d2 + 2(ac+ bd).

Similarly,

(|z|+ |w|)2 = |z|2 + |w|2 + 2 |z| |w| = a2 + b2 + c2 + d2 + 2 |z| |w| .

So we must prove that ac+ bd ≤ |z||w|. Now

|z| |w| =
√
a2 + b2

√
c2 + d2 =

√
(a2 + b2) (c2 + d2)

=
√
a2c2 + b2d2 + a2d2 + b2c2 =

√
(ac+ bd)2 + (ad− bc)2

≥
√

(ac+ bd)2 = |ac+ bd|

Now every real number k is less than or equal to its own absolute value |k|. Hence

ac+ bd ≤ |ac+ bd|≤ |z||w|,

and the proof is complete.

The proofs of (ii) and (iv) are left as an exercise.

In the next chapter we will explore some uses of the complex plane representation of complex numbers

and show how an understanding of the geometry of complex numbers is useful in performing certain

types of calculations.

9



CHAP. 1 SET NOTATION AND COMPLEX NUMBERS

- Exercises In addition to doing the following exercises you should look at the online quiz

www.maths.usyd.edu.au/u/UG/JM/MATH1001/Quizzes/quiz1.html.which covers the

material in this chapter. You can get to this page from the course homepage.

1. In each of the following exercises, perform the indicated operations and give the final answer in

the form x+ iy.

a) (5− 2i) + (2 + 3i) h) (a+ ib)/(a− ib)
b) (2− i)− (6− 3i) i) 1/(3 + 2i)

c) (2 + 3i)(−2− 3i) j) i2, i3, i4, ..., i10

d) −i(5 + i) k) (1 + i)/(1− i)
e) 1/i l) [i/(1− i)] + [(1− i)/i]
f) (a+ ib)(a− ib) m) (1/i)− 3i(1− i)
g) 6i/(6− 5i) n) i123− 4i9 − 4i

2. If z = 5 + 12i and w = 3 + 4i, express w + z, z −w, zw and z/w in the form a+ ib. Use these

results to verify that

a) |zw|= |z||w| c) |z + w|≤ |z|+|w|
b) |z/w|= |z|/|w| d) |z − w|≥ |z|−|w|

3. If z = x+ iy, express each of the following explicitly in terms of x and y.

a) Re(z/z) e) |z6|
b) |(z/z)| f) |(z + 1)/(z − 1)|
c) Imz3 g) Re(1/z2)

d) Re z4

4. Simplify the following expressions.

a) Im 1
1+i

d) |1+3i
3+i
|

b) Re (1−i)2
1+2i

e) | (1+i)6

i3(1+4i)2
|

c) |cos θ + i sin θ|, where θ is any angle

5. Solve the following equations using the quadratic formula.

a) y2 + 2y + 5 = 0 c) t2 + t− 1 = 0

b) z2 + 3z + 8 = 0 d) 7a2 + 8a+ 4 = 0

6. If z = 3− 2i, plot z, −z, z and −z as points in the complex plane.

7. Show that for any complex number z, |z|= |z|.

10



1.4 The set of complex numbers

8. z = z, what can you say about z?

9. Prove properties (ii) and (iv) of the modulus, given at the end of the chapter.

(Hint for (iv): write |z|= |(z + w)w| and use property (iii).)

10. Give a geometric justification of the triangle inequality:

|z1 + z2|≤ |z1|+|z2|,

where z1 and z2 are any two complex numbers.

11. In each of the following cases, find the set of all points in the complex plane satisfying the given

condition (describe the set, sketch it, and give its cartesian equation, if appropriate).

a) Imz ≥ 0 f) |z − 5|= 6

b) 0 < Im(z + 1) ≤ 2π g) |z + 2i|≥ 1

c) −1 ≤ Re z < 1 h) |z + i|= |z − i|
d) Re(iz) = 3 i) |z + 3|+|z + 1|= 4

e) Re(z + 2) = −1 j) |z + 3|−|z + 1|= ±1

12. If z is a variable complex number, mark clearly on an Argand diagram (i.e., on the complex

plane) the regions described by

a) Re z ≥ 2 and 0 ≤ Im(z) ≤ 3 d) |z − 2 + i|> 6 and Re z > 2

b) Re z ≥ −2 or 0 ≤ Imz ≤ 3 e) 1 < |z − 2 + i|< 3 and Imz ≥ 0.

c) 2 < |z|< 3 and Re z < 2.5

♦

11
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Chapter 2 Polar form and roots of complex
numbers

A detailed list of mathematical objectives (knowledge, understanding and skills) for this chapter

is provided in the weekly tutorial exercises. Equally important are the generic skills you will

develop. The study of mathematics enhances your ability to think logically and analytically,

move from the particular to the general, work quantitatively and improve problem-solving skills.

By reading and working carefully through the material in this chapter you will develop the

following additional generic skills:

• Recognise that objects can be represented in different but equivalent forms.

• Develop the ability to choose the form most suitable for the task at hand.

• Use geometric/visual techniques to help understand new concepts.

2.1 Polar and Cartesian forms of complex numbers

In the last chapter we introduced the set of complex numbers and showed how such numbers can be

represented as points on the complex plane. To position the complex numberz = a + bi we need two

pieces of information: the real part a and the imaginary part b. We can also plot the same number,

however, with two different pieces of information: the distance |z| of the point from the origin and the

angle of the line from the point to the origin, measured anticlockwise from the positive real axis. This

angle is known as the argument of z or arg z.

13



CHAP. 2 POLAR FORM AND ROOTS OF COMPLEX NUMBERS

If we let |z|= r and argz = θ then we can see that

Re z = a = r cos θ and Imz = b = r sin θ.

Therefore instead of writing z = a+ ib, we can write

z = r cos θ + ir sin θ = r(cos θ + i sin θ).

This is known as the polar form of a complex number. In polar form, a complex number is specified

by its modulus r and its argument θ . The form z = a + ib introduced in the last chapter is called the

Cartesian form, in which z is specified by its real and imaginary parts.

Complex numbers can easily be changed from one form to another. If a number is in Cartesian form

z = a+ ib, then the modulus r is equal to
√
a2 + b2 and the argument θ can be found using tan θ = b

a

. Because tan θ has the same values in the first and third quadrants and in the second and fourth

quadrants it is essential that you plot the complex number on the complex plane when you are finding

its argument. This will make it very clear in which quadrant the argument lies.

. Example 2.1.

1. Write −3 + 3i in polar form.

Here r = |−3 + 3i|=
√

(−3)2 + 32 =
√

18 = 3
√

2. Plotting −3 + 3i on the complex plane

gives the following picture.

14



2.1 Polar and Cartesian forms of complex numbers

Hence arg(−3 + 3i) is an angle in the second quadrant. By inspection we can see that arg(−3 +

3i) = 3π
4

. Alternatively we find thattan θ = −1 and hence θ = 3π/4. Without the diagram we

are left with the alternatives θ = −π/4 or 3π/4. As we know, tan−1(−1) = −π/4 . (If you

use a calculator in radian mode, it will tell you that tan−1(1) ≈ −0.7854.) The diagram easily

distinguishes between right and wrong answers. So

−3 + 3i = 3
√

2(cos 3π/4 + i sin 3π/4).

2. Write −1−
√

3i in polar form.

The modulus is given by r =
√

(−1)2 + (
√

3)2 =
√

1 + 3 = 2. We plot −1 −
√

3i in the

complex plane.

We see that arg(−1 +
√

3i) lies in the third quadrant. Since tan θ =
√

3 the value of θ is 4π/3.

(We could also write θ = −2π/3 equally correctly.) Therefore −1 −
√

3i = 2(cos 4π/3 +

i sin 4π/3) in polar form.

3. Find the modulus and argument of 3 + 7i.

The modulus is r =
√

32 + 72 =
√

58. In the complex plane 3 + 7i lies in the first quadrant.

15



CHAP. 2 POLAR FORM AND ROOTS OF COMPLEX NUMBERS

We find that tan θ = 7
3

adn so θ−1 7
3
≈ 1.17. In polar form 3 + 7i =

√
58(cos(tan−1 7

3
) +

i sin(tan−1 7
3
)) ≈

√
58(cos 1.17 + i sin 1.17)

4. Write −29 in polar form.

Although −29 is a real number it can still be written in polar form. Clearly |−29|= 29 and from

the complex plane we see arg(−29) = π.

Hence −29 = 29(cos π + i sin π) in polar form.

5. Convert 8(cos(−π/6) + i sin(−π/6)) to Cartesian form.

It is usually much simpler to convert a complex number from polar form to Cartesian form than

to convert a complex number from Cartesian to polar form. All that needs to be done is to

evaluate the cosine and sine and simplify the resulting expression. So

8(cos(−π/6) + i sin(−π/6)) = 8

(√
3

2
− 1

2
i

)
= 4
√

3− 4i

6. Convert 5(cos(π/2) + i sin(π/2)) into Cartesian form.

5(cos(π/2) + i sin(π/2)) = 5 (0 + i) = 5i

16



2.1 Polar and Cartesian forms of complex numbers

♦

Sometimes the polar form of a complex number, r(cos θ + i sin π) is abbreviated to r cisπ, where

cisθ = cos θ + i sin θ

So, for example, 8cis(−π
6

) = 8(cos(−π
6

) + i sin(−π
6

))

For a complex number z we can choose how to express argz. For example, arg(−1 + i) can be given

as 3π/4 or −5π/4 or 11π/4. We could write it most generally as 3π
4

+ 2kπ where k ∈ Z. In fact, a

given complex number has an infinite number of arguments which differ by integer multiples of 2π.

This fact becomes important when we take roots of complex numbers later in this chapter.

To eliminate this ambiguity we can specify the principal argument of z, Arg z:

The principal argument of z, Argz, is the particular argument of z such that

−π < Argz ≤ π

Hence arg(−1 + i) = 3π/4 or −5π/4 or 11π/4 and so on, but Argz = 3π/4 only.

It is important to understand that complex numbers have multiple arguments when equating two

complex numbers in polar form. Consider the complex numbers z = r(cos θ + i sin θ) and w =

17
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s(cosφ + i sinφ). Ifz = w then they both correspond to the same point in the complex plane. Hence

they are the same distance from the origin (that is, r = s) and have the same principal argument (that

is, θ = φ+ 2kπ, where k is an integer).

+ [Aside]:
A note on special angles. In the examples above you will see that most of the polar angles that we used

were angles with exact sines or cosines, sometimes known as special angles. For example, any angle which is

a multiple of p/2 has either sine or cosine equal to zero. So cos(π/2) = 0, sin(π/2) = 1 and cosπ = −1,

sinπ = 0.

The angles π/6 and π/3, which correspond to 30 and 60 degrees respectively (and any angles that are multiples

of these) have special values for sine and cosine, as does π/4 (45 degrees) and its multiples. You will have

learnt about these special cases at high school. As they are used extensively in this chapter, it is important that

you revise them as soon as possible if you have forgotten about them. You may find it helpful to look at the

right-angle triangles with angle π/4 or π/3 and π/6.

It is easy to find sines and cosines from these triangles, since sin θ is given by the length of the side opposite

θ divided by the length of the hypotenuse and cos θ is given by the length of the side adjacent to θ divided by

the length of the hypotenuse. For example, cos(π/4) = sin(π/4) = 1/
√

22 and cos(π/3) = 1/2, sin(π/3) =
√

3/2. ,
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2.2 Arithmetic in polar form

2.2 Arithmetic in polar form

Complex numbers in polar form can be added or multiplied together, subtracted from one another,

divided by one another or raised to a power. We shall see, however, that polar form is particularly

useful when multiplying or dividing complex numbers, or raising a complex number to a power.

Consider two complex numbers: z = r(cos θ + i sin θ) and w = t(cosφ + i sinφ). Here the modulus

of z is r and θ is an argument of z. The modulus of w is t and φ is an argument of w.

Addition and subtraction

z + w = r(cos θ + i sin θ) + t(cosφ+ i sinφ)

= r cos θ + ir sin θ + t cosφ+ it sinφ

= (r sin θ + t cosφ) + i(r sin θ + t sinφ)

Subtraction is done in a similar way. Generally, there is little point in changing a complex number

from Cartesian form to polar form to perform addition or subtraction. Using polar form for addition

and subtraction is more complicated and gives no extra insight to the problem.

. Example 2.2.

6(cos
π

3
+ i sin

π

3
)− 2(cos

π

6
+ i sin

π

6
) = 6 cos

π

3
+ 6i sin

π

3
− 2 cos

π

3
− 2i sin

π

3

= (6 cos
π

3
− 2 cos

π

6
) + i(6 sin

π

3
− 2 sin

π

6
)

♦

The solution in this example, although it involves sines and cosines, is no longer in polar form; polar

form is strictly an expression of the type r(cos θ + i sin θ).

Multiplication

zw = r(cos θ + i sin θ)t(cosφ+ i sinφ)

= rt(cos θ + i sin θ)(cosφ+ i sinφ)

= rt(cos θ cosφ+ i cos θ sinφ+ i sin θ cosφ+ i2 sin θ sinφ)

= rt((cos θ cosφ− sin θ sinφ) + i(cos θ sinφ+ sin θ cosφ))

= rt(cos(θ + φ) + i sin(θ + φ)).

The last line uses the angle sum formulas of trigonometry:

cos(α + β) = cosα cos β − sinα sin β

sin(α + β) = sinα cos β + cosα sin β.
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Notice that multiplication of two numbers in polar form gives an answer in polar form. We see that

the modulus of the product is rt, the product of the two moduli of the numbers which we multiplied

together, and that (θ+ φ), the sum of the arguments of the original two numbers, is an argument of the

product. In general:

To multiply complex numbers in polar form multiply the moduli and add the arguments.

That is,

r(cos θ + i sin θ)× t(cosφ+ i sinφ) = rt(cos(θ + φ) + i sin(θ + φ))

. Example 2.3.

6(cos
π

3
+ i sin

π

3
)× 2(cos

π

6
+ i sin

π

6
) = 12(cos

π

2
+ i sin

π

2
)

We can write down the answer straight away as the modulus is the product of 6 and 2 and π/3 +π/6 =

π/2 is an argument. ♦

Division

z

w
=
r(cos θ + i sin θ)

t(cosφ+ i sinφ)

=
r(cos θ + i sin θ)t(cosφ− i sinφ)

t(cosφ+ i sinφ)t(cosφ− i sinφ)

You should note that a complex number in the form t(cosφ − i sinφ) is not in polar form and so the

rule for multiplication in polar form does not apply. However, a number of the form t(cosφ− i sinφ)

can easily be put into polar form because

− sinφ = sin(−φ) and cosφ = cos(−φ)

Consequently,

t(cosφ− i sinφ) = t(cos(−φ) + i sin(−φ)),

and hence,

z

w
=
r (cos θ + sin θ) t (cos(−φ) + i sin(−φ))

t(cosφ+ i sinφ)t(cosφ− i sinφ)

=
rt(cos θ + i sin θ)(cos(−φ) + i sin(−φ))

t2(cos2 φ+ sin2 φ)

=
r

t
(cos (θ − φ) + i sin (θ − φ)) .
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We see that the modulus of the quotient is r/t, the quotient of the two moduli of the original two

numbers, and that (θ − φ) , the difference of the arguments of the original two numbers, is an argument

of the quotient. In general:

To divide complex numbers in polar form we divide their moduli and subtract their argu-

ments.

. Example 2.4.

6
(
cos π

3
+ i sin π

3

)
2
(
cos π

6
+ i sin π

6

) =
6

2

(
cos
(π

3
− π

6

)
+ i sin

(π
3
− π

6

))
= 3

(
cos

π

6
+ i sin

π

6

)
We can write down the answer immediately as the modulus is the quotient of 6 and 2 and an argument

is π/3− π/6 = π/6. ♦

Raising to an integer power Let us consider the problem (r(cos θ + i sin θ))2. Using the rule for

multiplication in polar form this becomes r2(cos 2θ + i sin 2θ). Following on from this we can write

(r(cos θ + i sin θ))3 = r2(cos 2θ + i sin 2θ)r(cos θ + i sin θ) = r3(cos 3θ + i sin 3θ).

Similarly (r(cos θ + i sin θ))4 = r4(cos 4θ + i sin 4θ). It is easy to see that for n ∈ {1, 2, 3, ...}.

(r(cos θ + i sin θ))n = rn(cosnθ + i sinnθ).

It is a useful exercise to prove this by induction. In fact, this is true not only when n is a positive integer

but for all integer values of n. Note that (r(cos θ + i sin θ))0 = 1.

To raise a complex number to any integer, raise the modulus to the integer and multiply the

argument by the integer.

. Example 2.5.(
6
(

cos
π

3
+ i sin

π

3

))8
= 68

(
cos

8π

3
+ i sin

8π

3

)
= 68

(
cos

2π

3
+ i sin

2π

3

)
.

since cos 8π
3

= cos 8π
3

and = sin 8π
3

= sin 2π
3

. ♦

In the special case when a complex number of modulus 1 is raised to an integer power, we have De

Moivres theorem :

Theorem 2.1. For any n ∈ Z,

(cos θ + i sin θ)n = cosnθ + i sinnθ.
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. Example 2.6.

i)

3

(
cos

3π

4
+ i sin

3π

4

)(
4

(
cos
−π
2

+ i sin
−π
2

))
= 12

(
cos

π

4
+ i sin

π

4

)
ii)

3
(
cos 3π

4
+ i sin 3π

4

)
4
(
cos −π

2
+ i sin −π

2

) =
3

4

(
cos

5π

4
+ i sin

5π

4

)
.

iii) Find (2 + 2i)(1
√

3i) in polar form.

First, let us put both numbers into polar form. This simplifies the multiplication and we will also

need these numbers in polar form for the next example. It is essential to draw a diagram:

Here |2 + 2i|=
√

4 + 4 =
√

8 = 2
√

2 and |1 −
√

3i|=
√

1 + 3 = 2. From the diagram,

θ = arg(2 + 2i) is in the first quadrant and φ = arg(1 −
√

3i) is in the fourth quadrant. Since

tan θ = 1, θ = π/4 and since tanφ =
√

3, φ = −π/3. So we have

(2 + 2i)
(

1−
√

3i
)

= 2
√

2
(

cos
π

4
+ i sin

π

4

)
2

(
cos
−π
3

+ i sin
−π
3

)
= 4
√

2

(
cos

(
π

4
+
−π
3

)
+ i sin

(
π

4
+
−π
3

))
= 4
√

2

(
cos
−π
12

+ i sin
−π
12

)
.

iv) Find (2 + 2i)/(1−
√

3i) in polar form.

The numbers (2 + 2i) and (1−
√

3i) are already in polar form from the previous example.
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2.3 Roots of complex numbers

2 + 2i

1−
√

3
i =

2
√

2
(
cos π

4
+ i sin π

4

)
2
(
cos −π

3
+ i sin −π

3

)
=
√

2

(
cos

(
π

4
− −π

3

)
+ i sin

(
π

4
− −π

3

))
=
√

2

(
cos

7π

12
+ i sin

7π

12

)
.

v) Find ((2 + 2i)/(1−
√

3i))6.

The quotient has already been calculated in polar form in the previous example.

(
2 + 2i

1−
√

3i

)6

=

(√
2

(
cos

7π

12
+ i sin

7π

12

))6

=
(

2
1
2

)6(
cos

7π

12
+ i sin

7π

12

)
= 23

(
cos
−π
2

+ i sin
−π
2

)
= −8i.

♦

2.3 Roots of complex numbers

What is meant by “a root of a complex number”, and how could such numbers be found? For example,

what is a cube root of −2 + 2i? By analogy with roots of real numbers, an obvious answer is to say its

a complex number z whose cube is −2 + 2i. It turns out that the easiest way to find z is to use polar

form; if we let z = r(cos θ+ i sin θ) then our task is to find all values of r and all values of θ such that

r3(cos 3θ + i sin 3θ) = −2 + 2i. Lets also put −2 + 2i into polar form.

The modulus is |−2 + 2i|=
√

8. The diagram shows that the principal argument is 3π/4 (in the second

quadrant) and so −2 + 2i =
√

8(cos 3π/4 + i sin 3π/4). Then we have

r3(cos 3θ + i sin 3θ) =
√

8(cos
3π

4
+ i sin

3π

4
).
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Since the left and right hand sides are both represented by the same point in the complex plane, we

must have r3 =
√

8 and 3θ = 3π/4 + 2kπ where k can be any integer. Therefore

r =
√

2 and θ = π/4 + 2kπ/3.

The unknown z we seek is then given in its most general form as

z =
√

2(cos(π/4 + 2kπ/3) + i sin(π/4 + 2kπ/3).

Since k can be any integer it appears at first sight that there are infinitely many complex numbers z

whose cube is −2 + 2i. In fact, it turns out that there are exactly three. To see this, let’s experiment

with some different values of the integer k.

When k = 0, we obtain

z =
√

2(cosπ/4 + i sinπ/4)
√

2(
1√
2

+ i
1√
2

)

+ 1 + i.

Plotting this answer on the complex plane we get:

When k = 1, we obtain

z =
√

2

(
cos

(
π

4
+

2π

3

)
+ i sin

(
π

4
+

2π

3

))
=
√

2

(
cos

11π

12
+ i sin

11π

12

)
.

When k = 2, we obtain

z =
√

2

(
cos

(
π

4
+

4π

3

)
+ i sin

(
π

4
+

4π

3

))
=
√

2

(
cos

19π

12
+ i sin

19π

12

)
=
√

2

(
cos
−5π

12
+ i sin

−5π

12

)
.

If we choose other values of k it turns out that we simply replicate one of the three values of z that

weve already calculated. For example, if k = −1, then
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2.3 Roots of complex numbers

z =
√

2

(
cos

(
π

4
+
−2π

3

)
+ i sin

(
π

4
+
−2π

3

))
=
√

2

(
cos
−5π

12
+ i sin

−5π

12

)
.

which is one of the values already found.

If all three distinct solutions are plotted on the complex plane we see that all lie on the circle of radius
√

2 centred on the origin, and each is separated from the others by an angle of 2π/3.

How many complex roots does a real number have? Let us look at the fourth roots of 16. You already

know that 24 = (−2)4 = 16. Hence 2 and −2 are fourth roots of 16. Are there other fourth roots?

We are looking for all z such that z4 = 16. Writing z = r(cos θ + i sin θ) and 16 = 16(cos 0 + i sin 0)

we have

z4 = r4(c cos 4θ + i sin 4θ) = 16(cos 0 + i sin 0)

and hence r4 = 16 and 4θ = 0 + 2kπ = 2kπ, where k can be any integer. Therefore r = 2 and

θ = kπ/2 , for any integer k. This gives z = 2(cos kπ
2

+ i sin kπ
2

).

We shall now choose various values of k to find explicit values of z.

When k = 0 we obtain

z = 2(cos 0 + i sin 0) = 2.

When k = 1 we obtain

z = 2(cos
π

2
+ i sin

π

2
) = 2i.

When k = 2 we obtain

z = 2(cosπ + i sin π) = −2,
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and when k = 3 we obtain

z = (cos
3π

2
+ i sin

3π

2
) = −2i.

All other values of k give one of the four answers already found, namely ±2, ±2i. For example, if

k = 7, we obtain z = 2(cos 7π
2

+ i sin 7π
2

) = −2i.

Therefore, 16 has two real fourth roots (±2) but it has four complex fourth roots (±2,±2i). When

these roots are plotted on the complex plane, they all lie on the circle of radius 2 centred at 0, spaced

π/2 apart.

In fact, every non–zero complex number (which includes every real number) has two complex square

roots, three complex cube roots, four complex fourth roots and so on. In general:

Every non–zero complex number has n distinct complex nth roots.

Therefore if we seek to find all cube roots of a complex number, for example, we know that there will

be three of them. Knowing how many roots to look for is useful in deciding which different values of

k to use in finding the roots explicitly.

. Example 2.7. Find all fifth roots of −
√

3− i, that is, all z such that z5 = −
√

3− i.
First, we put −

√
3− i into polar form. The modulus of −

√
3− i is |−

√
3− i|= 2. Plotting −

√
3− i

on the complex plane we see that the principal argument of −
√

3− i is −5π/6

Writing z = r(cos θ + i sin θ) gives

z5 = r5(cos 5θ + i sin 5θ) = 2(cos(
−5π

6
) + i sin(

−5π

6
).
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2.4 Roots of polynomial equations

Therefore r = 2
1
5 and θ = −π

6
+ 2kπ

5
, for any integer k. Since we know there are five fifth roots, we

choose five values of k. We set k = 0, 1, 2, 3 and 4 in the equation

z = 2
1
5 (cos(

−π
6

+
2kπ

5
) + i sin(

−π
6

+
2kπ

5
).

We obtain five different values of z:

z = 2
1
5

[
cos

(
−π
6

)
+ i sin

(
−π
6

)]
,

z = 2
1
5

[
cos

(
7π

30

)
+ i sin

(
7π

30

)]
,

z = 2
1
5

[
cos

(
19π

30

)
+ i sin

(
19π

30

)]
,

z = 2
1
5

[
cos

(
31π

30

)
+ i sin

(
31π

30

)]
,

z = 2
1
5

[
cos

(
43π

30

)
+ i sin

(
43π

30

)]
.

These are the five fifth roots of −
√

3− i. ♦

2.4 Roots of polynomial equations

We have already seen how to find roots of a complex number by understanding that the roots are

solutions of a very simple type of polynomial equation. What can be said about solutions of more

complicated polynomial equations such as z4 − 18z2 + 192z − 175 = 0? To discuss this more general

type of equation we need to be clear about what we mean by a polynomial and how we can use different

number sets in writing down and solving polynomial equations.

A polynomial in z is an expression of the form

anz
n + an−1z

n−1 + an−2z
n−2 + · · ·+ a1z + a0

where z is the variable and the numbers an, an−1, · · ·, a0 are the coefficients.

If an 6= 0 then the polynomial is said to have degree n. The term anz
n is known as the leading term.

The roots of a polynomial equation are the numbers z which satisfy

anz
n + an−1z

n−1 + an−2z
n−2 + ...+ a1z + a0 = 0.

27



CHAP. 2 POLAR FORM AND ROOTS OF COMPLEX NUMBERS

It is important to know in which number set the solutions of a polynomial equation lie. For example, the

problem “solve z4−16 = 0 over the real numbers” (or equivalently, “find the real roots of z4−16 = 0”)

has the answer z = 2 or −2. If the problem is changed slightly to read “solve z4 − 16 = 0 over the

complex numbers” (or “find the complex roots of z4 − 16 = 0”), then the correct answer is z = 2, 2i,

−2 or −2i. Clearly this polynomial equation has more complex solutions than real solutions. It is a

degree 4 polynomial equation and has four complex roots, although it has only two real roots.

In general

A polynomial equation of degree n has at most n complex roots. All, some or none of these

roots may be real.

. Example 2.8. Find all complex roots of the polynomial equation z5 − iz2 = 0.

Observe that the left hand side can be factorised; this gives

z2(z3 − i) = 0.

Thus the roots of the original equation consist of all the roots of the equation z2 = 0 together with

all the roots of the equation z3 − i = 0. The only root of z2 = 0 is z = 0. We now find the roots

ofz3 − i = 0. We write i in polar form.

Clearly |i|= 1 and arg i = pi
2

+ 2kπ. As we are seeking cube roots, we expect three solutions, so we

will use k = 0, 1, 2 in the expression

1
1
3

[
cos

(
π/2 + 2kπ

3

)
+ i sin

(
π/2 + 2kπ

3

)]
.

When k = 0 we obtain cosπ/6 + i sin π/6, when k = 1 we obtain cos 5π/6 + i sin 5π/6 and when

k = 2 we obtain cos 3π/2+i sin 3π/2. Therefore the complex roots of z3−i = 0 are
√
3
2

+ 1
2
i,
√
−3
2

+ 1
2
i

and −i.
There are just four distinct roots of the original equation, namely

0,

√
3

2
+

1

2
i,
−
√

3

2
+

1

2
i, −i.
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2.4 Roots of polynomial equations

♦

+ [Aside]:

Polynomial equations of degree n have at most n distinct complex roots, as some roots might be repeated. For
example, the polynomial z2 − 2z + 1 = (z − 1)2 has a double root at z = 1, also called a root of multiplicity

2. If n is a positive integer then the equation zn = 0 has a root of multiplicity n at z = 0. It is true that every

polynomial equation of degree n has exactly n complex roots, counted with multiplicity. ,

We have already seen in Chapter 1 that when a quadratic equation with real coefficients has non-

real complex roots, then these roots come in complex conjugate pairs. So for example, the equation

z2 + 4z + 5 = 0 has roots z = −2 + i and z = −2− i.
In fact:

If the coefficients in a polynomial equation are all real then all of the no–real complex roots

occur in complex conjugate pairs.

For example, the polynomial equation z4 − 16 = 0 that was discussed earlier in this chapter has two

real roots (2 and −2) and two imaginary roots (2i and −2i), and these imaginary roots are complex

conjugates of each other. The coefficients of this polynomial, 1 and−16 are both real and so we expect

complex roots will occur in complex conjugate pairs. By contrast, the polynomial z3 − i = 0, solved

in Example 2.8 above, does not have all real coefficients; the coefficients are 1, which is real, and −i,
which is not real. The roots of z3− i = 0 are

√
3
2

+ 1
2
i, −

√
3

2
+ 1

2
i and−i. Although they are all non–real

complex numbers, they do not occur in complex conjugate pairs.

If one complex root of a polynomial equation with real coefficients is known then its complex conjugate

can immediately be written down to give another root.

. Example 2.9. Find all roots of z4 − 18z2 + 192z − 175 = 0, given that 3− 4i is a root.

If 3−4i is a root, then its complex conjugate 3+4i is also a root since the coefficients of the polynomial

are real. We write down the quadratic expression with these two roots. We can then divide this

quadratic into the original polynomial to get another quadratic which can be easily solved. Since

(z− (3− 4i))(z− (3 + 4i)) = z2− 6z+ 25, we want to find (z4− 18z2 + 192z− 175)/(z2− 6z+ 25).
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Using polynomial long division:

z2 +6z −7

z2 − 6z + 25) z4 −18z2 +192z −175

z4 −6z3 +25z2

6z3 −43z2 +192z

6z3 −36z2 +150z

−7z2 +42z −175

−7z2 +42z −175

0

Therefore we have

z4 − 18z2 + 192z − 175 = (z − (3− 4i)) (z − (3 + 4i))
(
z2 + 6z − 7

)
= (z − (3− 4i)) (z − (3 + 4i)) (z − 1) (z + 7) .

So the four roots of the original degree 4 polynomial are 3− 4i, 3 + 4i, 1 and −7.

♦

+ [Aside]:
It is not difficult to prove rigorously that if a polynomial equation with real coefficients has complex roots then

these roots occur in complex conjugate pairs.

First we need to show that z + w = z+w and that zw = zw.Try doing this by writing z = a+ib and w = c+id

and calculating z + w and zw.

Then, let us consider a polynomial

p(z) = anz
n + an−1z

n−1 + an−2z
n−2 + · · ·+ a1z + a0

where an, an−1, an−2, · · ·, a0 are all real.

Suppose there is some complex number v which is a root of the polynomial, so that p(v) = 0. If we take complex
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conjugates of both sides of the equation we have p(ν) = 0 = 0 and hence

0 = p(ν)

= anνn + an−1νn−1 + an−2νn−2 + · · ·+ a1ν + a0

= anνn + an−1νn−1 + an−2νn−2 + · · ·+ a1ν + a0

= anνn + an−1νn−1 + an−2νn−2 + · · ·+ a1ν + a0

= anνn + an−1νn−1 + an−2νn−2 + · · ·+ a1ν + a0

= an (ν)n + an−1 (ν)n−1 + an−2 (ν)n−2 + · · ·+ a1ν + a0

= p(ν)

Therefore since p(ν) = 0, ν is a root. That is, both ν and its conjugate ν are roots.

As you read through the above proof try to work out why each line follows from the previous line.

,

- Exercises 2.1.

1. For each of the following numbers, give the numerical value of the real part x, the imaginary

part y, the modulus r and the principal value of the argument θ . Plot the number as a point in

the complex plane.

a) 1− i
√

3 d) 2(cos(π/6) + i sin(π/6)

b) 1/(1− i) e)
(
1+i
1−i

)2
c)

(
i+
√

3
)2

f) 3+i
2+i

2. Write each of the following complex numbers in polar form.

−4i, −2 + 2i 1− i

a) (−2 + 2i)(1− i) c) (1− i)6

b) −4i/(−2 + 2i) d) (−2 + 2i)15

3. Use de Moivre’s theorem to simplify

a) (cos(2π/3) + i sin(2π/3))9 c) (cos(2π/3)− i sin(2π/3))6

b) (cos(π/3) + i sin(π/3))4 d) (sin(2π/3) + i cos(2π/3))9.

4. Recall that if p(z) is a polynomial with real coefficients and if w ∈ C is a root of p(z) then so is

w. Find the roots of the quadratic equation q(z) = z2 − 3(1 + i)z − 2 + 6i = 0. Verify that if
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CHAP. 2 POLAR FORM AND ROOTS OF COMPLEX NUMBERS

w is a root of q(z) then w is not a root and explain why this does not contradict the statement at

the start of this question.

5. Find all the roots of f(z) = z4 − 3z3 + 7z2 + 21z − 26, given that 2− 3i is a root.

6. Find all the roots of z4 − 5z3 + 4z2 + 2z − 8, given that 1− i is a root.
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Chapter 3 Polar exponential form

A detailed list of mathematical objectives (knowledge, understanding and skills) for this chapter

is provided in the weekly tutorial exercises. Equally important are the generic skills you will

develop. The study of mathematics enhances your ability to think logically and analytically,

move from the particular to the general, work quantitatively and improve problem-solving skills.

By reading and working carefully through the material in this chapter you will develop the

following additional generic skills:

• Recognise the same information when presented in different forms.

• Develop the ability to choose the form most suitable for the task at hand.

• Convert objects from one form to another.

• Use geometric/visual techniques to help understand new concepts.

• Generalise ideas from simple and familiar settings to more abstract settings.

In this chapter a more concise polar form of a complex number, called polar exponential form, is

introduced; we see how to use this new form to derive some interesting trigonometric relationships.

Polar exponential form also leads to the definition of a new function, namely the complex exponential

function. Since functions are fundamental to the study of all branches of mathematics, this provides

an opportunity to review the definition of a function and discuss some of the important properties of

functions.

3.1 Polar exponential form

Consider two complex numbers of modulus 1 given in polar form. In the previous chapter we saw that

when multiplying, we add arguments; when dividing, we subtract arguments.

This process is reminiscent of the way we manipulate powers of the same base in the real number

system. Recall that when multiplying powers of a positive number a, we add the powers:

ax × ay = ax+y
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CHAP. 3 POLAR EXPONENTIAL FORM

and when dividing we subtract the powers:

ax/ay = ax−y,

where a, x, y are real numbers and a > 0.

This leads us to make use of the same type of notation for complex numbers in polar form.

Theorem 3.1. (Euler formula)

eiθ = cos θ + i sin θ, ∀ θ ∈ R. (3.1.1)

Proof: Recall the Taylor expansions for the functions ex, cosx and sinx about x = 0, with x ∈ R:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+ · · · , (3.1.2)

cosx = 1 − x2

2!
+
x4

4!
− x6

6!
+ · · · , (3.1.3)

sinx = x − x3

3!
+
x5

5!
+ · · · , (3.1.4)

in agreement to our knowledge that cosx is an even function, and sinx an odd one. Then, substituting

x = iθ into ex, and noticing i2 = −1, i3 = −i and i4 = 1, we have

eiθ = 1 +iθ + (iθ)2

2!
+ (iθ)3

3!
+ (iθ)4

4!
+ (iθ)5

5!
+ (iθ)6

6!
+ · · ·

= 1 +iθ − θ2

2!
−i θ3

3!
+ θ4

4!
+i θ

5

5!
− θ6

6!
− · · ·

= 1 − θ2

2!
+ θ4

4!
− θ6

6!
+ · · ·

+ i

(
θ − θ3

3!
+ θ5

5!
− · · ·

)
,

hence in comparison with eqs.(3.1.3) and (3.1.4) we recognize

eiθ = cos θ + i sin θ.

Obviously, cos θ accounts for the even part of eiθ, and sin θ the odd part.

[Remarks]:
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3.2 Arithmetic in polar exponential form

• eiθ has argument θ, and modulus 1, due to |eiθ|=
√

cos2 θ + sin2 θ = 1. For any value of θ, the

complex number eiθ lies on the unit circle |z|= 1.

• From (3.1.1) we have

e−iθ = cos(−θ) + i sin(−θ) = cos θ − i sin θ. (3.1.5)

Hence

cos θ =
eiθ + eiθ

2
, sin θ =

eiθ − eiθ

2i
. (3.1.6)

• If θ and φ are any two real numbers, calculations done in the previous chapter show us that

eiθeiφ = (cos θ + i sin θ) (cosφ+ i sinφ) = cos (θ + φ) + i sin (θ + φ) = ei(θ+φ), (3.1.7)

and
eiθ

eiφ
=

(cos θ + i sin θ)

(cosφ+ i sinφ)
== cos (θ − φ) + i sin (θ − φ) = ei(θ−φ). (3.1.8)

This new notation allows us to write a complex number of modulus r and argument θ in a more concise

polar form called polar exponential form,

z = reiθ

We now have three ways of writing a non–zero complex number z: *1

• Cartesian form: z = a+ ib;

• Polar form: z = r(cos θ + i sin θ);

• Polar exponential form: z = reiθ .

+ [Aside]:
When substituting θ = π into eiθ = cos θ + i sin θ, we obtain eiπ = cosπ + i sinπ, or

eiπ + 1 = 0.

It is remarkable because one equation of great simplicity contains five important constants: e, θ, i, 1 and 0. ,

*1The zero complex number 0 = 0 + i0 is not assigned a polar form as there is no sensible way to assign it an argument.
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CHAP. 3 POLAR EXPONENTIAL FORM

3.2 Arithmetic in polar exponential form

Multiplication and division
Polar exponential form, by design, has the same useful property of ordinary polar form; when mul-

tiplying or dividing two numbers in polar exponential form the answer is automatically expressed in

polar exponential form as well, allowing the new modulus and argument to be read off immediately.

Let z = reiθ and w = seiφ be any two non–zero complex number. Then

zw = reiθ × seiφ = rsei(θ+φ)

and
z

w
=
reiθ

seiφ
=
r

s
ei(θ−φ).

. Example 3.1. Find z2w3 and z2/w3 when z = 2ei
π
4 and w = 3ei

3π
2 .

We first calculate z2 and w3, to obtain

z2 = 4ei
π
2

and

w3 = 27ei
9π
2 .

Therefor

z2w3 = 4ei
π
2 × 27ei

9π
2 = 108e5πi = −108.

Similarly,
z2

w3
=

4ei
π
2

27ei
9π
2

=
4

27
e−4πi =

4

27
.

♦

Raising to an integer power
For every positive integer n, we have

zn =
(
reiθ
)n

=
(
reiθ
)
×
(
reiθ
)
× · · · ×

(
reiθ
)

= rneinθ.

In fact, this hold for all integers n, whether positive, negative or zero.

. Example 3.2. Using polar exponential form, find z8 when z = 1 +
√

3i.

We find that |z|= 2 and arg z = π
3

, so z = 2e
π
3
i. Hence

z8 = 28e
8π
3
i = 256e

8π
3
i = 256e

2π
3
i = −128 + 128

√
3i.

♦
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3.3 Cosine and sine in terms of exponentials

. Example 3.3. Simplify e
15π
7
i.

We have

e
15π
7
i = e2πi+

π
7
i = e2πi × e

π
7
i == (cos 2π + i sin 2π) e

π
7
i

= (1 + i0) e
π
7
i = e

π
7
i.

♦

The last example demonstrates once again that arguments are only determined up to integer multiples

of 2π; that is, eiθ is the same as eiφ when θ and φdiffer by an integer multiple of 2π. It is useful to

remember that e2πi = 1 and that for every integer n, e2nπi = 1.

If reiθ = seiφ , then r = s and θ = φ+ 2kπ, for some integer k.

3.3 Cosine and sine in terms of exponentials

We have, for all real θ ,

eiθ = cos θ + i sin θ, (3.3.9)

and so

e−iθ = ei(−θ) = cos (−θ) + i sin (−θ) = cos θ − i sin θ. (3.3.10)

Adding the above two equations we obtain

eiθ + e−iθ = cos (θ) + i sin (θ) + cos (θ)− i sin (θ) = 2 cos θ,

which rearranges to give

cos θ =
1

2

(
eiθ + e−iθ

)
.

Subtracting e−iθ from eiθ gives

eiθ − e−iθ = ei(−θ) = cos (θ) + i sin (θ)− cos (θ) + i sin (θ) = 2i sin θ

which rearranges to give

sin θ =
1

2i

(
eiθ − e−iθ

)
They are useful formulas:
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CHAP. 3 POLAR EXPONENTIAL FORM

For all real θ, cos θ = 1
2

(
eiθ + e−iθ

)
and sin θ = 1

2i

(
eiθ − e−iθ

)
.

These expressions for cos θ and sin θ in terms of eiθ can be used to derive some special trigonometric

identities which are helpful in solving certain types of integration problems involving powers of cos

and sin, as we shall see soon. Since these involve the binomial theorem, we first revise that theorem

very briefly.

Binomial theorem
The expression x + y is called a binomial expression, and the binomial theorem is a generalisation of

the familiar formula (x+ y)2 = x2 + 2xy + y2. It states that for all x, y and for all integers n ≥ 0,

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y + · · ·+

(
n

r

)
xn−ryr + · · ·+

(
n

n

)
yn

Using nCr notation, where nCr =
(
n
r

)
= n!

r!(n−r)!

(x+ y)n = nC0x
n + nC1x

n−1y + · · ·+ nCrx
n−ryr + · · ·+ nCny

n

The numbers
(
n
0

)
,
(
n
1

)
, · · · ,

(
n
n

)
, are called the binomial coefficients.

Thus, for example, with n = 4 we have (x+ 4)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4, and with n = 5

we have (x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.

The binomial coefficients can also be found in Pascals Triangle, part of which is shown below:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Note that each row gives the binomial coefficients for a particular value of n in the expansion of

(x+ y)n. For example, in the expansion of (x+ y)3 the coefficients are 1, 3, 3, 1. Another interesting

feature of Pascals triangle is that each entry is the sum of the two entries in the row above it. In the last

row shown above, 21 = 15 + 6, 35 = 20 + 15, and so on. So you can add on as many additional rows

as you require, remembering that each row begins and ends with a 1, to enlarge the triangle to any n

value you please.
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3.3 Cosine and sine in terms of exponentials

Applications to trigonometry
Lets now calculate cos3 θ using the binomial theorem with n = 3 (binomial coefficients 1, 3, 3, 1) and

the fact that cos θ = 1
2
(eiθ + e−iθ).

cos3 θ =
1

8

(
eiθ + e−iθ

)3
=

1

8

(
e3iθ + 3e2iθe−iθ + 3eiθe−2iθ + e−3iθ

)
=

1

8

(
e3iθ + 3e3iθ + 3e−iθ + e−3iθ

)
=

1

4

(
1

2

(
e3iθ + e−3iθ

)
+

3

2

(
eiθ + e−iθ

))
=

1

4
(cos 3θ + 3 cos θ)

This formula for cos3 θ may also be calculated simply using standard trigonometric identities, but the

working is not as elegant as this approach. The same technique can be used to find expressions for any

positive power of cos θ and sin θ , which can then be used in integration problems.

. Example 3.4. Find
∫

cos3 θ dθ.

∫
cos3 θ dθ =

∫
1

4
(cos 3θ + 3 cos θ) dθ

=
1

4

∫
cos 3θ dθ +

3

4

∫
cos θ dθ

=
1

12
sin 3θ +

3

4
sin θ + C,

where C is an arbitrary constant. ♦

. Example 3.5. Find a formula for sin4 θ in terms of cos 4θ and cos 2θ .

Using the binomial theorem with n = 4 and the expression for sin θ in terms of exponentials, we obtain

sin4 θ =

(
1

2i

(
eiθ − e−iθ

))4

=
1

16i4
(
e4iθ − 4e3iθe−iθ + 6e2iθe−2iθ − 4eiθe−3iθ + e−4iθ

)
=

1

16

(
e4iθ − 4

(
e2iθ + e−2iθ

)
+ 6
)

=
1

8

(
1

2

(
e4iθ + e−4iθ

)
− 4× 1

2

(
e2iθ + e−2iθ

)
+ 3

)
=

1

8
(cos 4θ − 4 cos 2θ + 3)
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♦

So far we have shown how to obtain formulas for powers of sinnθ and cosnθ in terms of cosines of

multiples of θ , but we can also reverse the process to find formulas for expressions like cos θ and sin θ

. In these cases we revert to the non-exponential polar form and apply both de Moivres theorem and

the binomial theorem to (cos θ + i sin θ)n.

. Example 3.6. Find formulas for cos 4θ and sin 4θ in terms of powers of cos θ and sin θ .

cos 4θ + i sin 4θ = (cos θ + i sin θ)4

= cos4 θ + 4 cos3 θ (i sin θ) + 6 cos2
(
i2 sin2 θ

)
+ 4 cos θ

(
i3 sin3 θ

)
+ i4 sin4 θ

= cos4 θ − 6 cos2 sin2 θ + sin4 θ + i
(
4 cos3 θ sin θ − 4 cos θ sin3θ

)
Equating the real parts on both sides of the equation gives

cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

and equating the imaginary parts gives

sin 4θ = 4 cos3 θ sin θ − 4 cos θ sin3 θ.

♦

3.4 Complex exponential function

We have defined eiθ as cos θ + i sin θ for any θ ∈ R. This has given us a way of calculating complex

exponentials where the exponent is a purely imaginary number. So, for example,

e3i = cos 3 + i sin 3 ≈ −0.989 + 0.141i.

(We are using radian measure, not degrees.)

The next step is to extend this so we can define exponentials of any complex number. Let z = x + iy

be a complex number expressed in Cartesian form. What would be a sensibleway of defining ez?

Weve already seen that expressions like eiθ are manipulated using the standard rules that apply to real

exponentials: add exponents when multiplying, subtract exponents when dividing and, when taking

integer powers, multiply exponents by that integer. It would be sensible to define ez so that these

familiar and easy–to–use rules also apply in this general setting.
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3.4 Complex exponential function

Definition 3.1. If z = x+ iy with x and y real, we define

ez = ex+iy = exeiy = ex(cos y + i sin y).

Study this definition carefully, especially the last expression:

ez = ex(cos y + i sin y).

Notice that since x and y are real and ex is real and positive, this displays ez as a complex number in

polar form. We can therefore read off the modulus and argument of ez.

When z = x+ iy with x and y real, |ez|= ex and argez = y.

The usual rules formultiplying, dividing and taking integer powers still apply. If z = x + iy and

w = µ+ iν we know that z+w = (x+µ) + i(y+ ν), z−w = (x−µ) + i(y− ν) and nz = nx+ iny.

Hence

ez × ew =
(
exeiy

) (
eυeiν

)
= ex+υei(y+ν) = e(z+w),

ez

ew
=
exeiy

eυeiν
= ex−υei(y−ν) = e(z−w),

and for any integer n,

(ez)n =
(
exeiy

)n
= (ex)n

(
eiy
)n

= enxeiny = enz.

We can now calculate the value of ez for any complex number z.

. Example 3.7. Express the complex exponentials e0, e2+4i, e−1+iπ/4, e−1+i17π/4 and ex where x is

real, as complex numbers in Cartesian form.

Solution: Using the definition of ez, we obtain

e0 = e0+0i = e0 (cos 0 + i sin 0) = 1 (1 + i0) = 1,

e2+4i = e2 (cos 4 + i sin 4) = e2 cos 4 + ie2 sin 4 ≈ −4.83− 5.59i,

e−1+iπ/4 = e−1
(

cos
π

4
+ i sin

π

4

)
= e−1 cos

π

4
+ ie−1 sin

π

4
≈ 0.26 + 0.26i,

e−1+i17π/4 = e−1
(

cos
17π

4
+ i sin

17π

4

)
= e−1 cos

17π

4
+ ie−1 sin

17π

4
≈ 0.26 + 0.26i,

ex = ex+i0 = ex (cos 0 + i sin 0) = ex (1 + i0) = ex.

That the third and fourth results are equal should be no surprise, since π/4 and 17π/4 differ by an

integer multiple of 2π and from previous work, e2πi = 1. The last result shows that when z equals the

real number x, the complex expression ez agrees with the usual real exponential ex. ♦
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CHAP. 3 POLAR EXPONENTIAL FORM

What we have done in this section is to set out a way of calculating the value of ez for any complex

number z. The value of ez is also a complex number. You can probably already see that we have in fact

defined a function, with the set of all complex numbers C as the set of inputs and the outputs also being

members of the set C. How does this tie in with your notion of function from high school calculus?
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Chapter 4 Fourier series and transform (I)
— Periodic functions

4.1 Summary of formulae in Chapters 4 and 5

Let f(x) be a periodic function over [−π, π]. The Fourier series expansion of f(x) is conventionally

given by

f(x) = A0 +
∞∑
n=1

An cosnx+
∞∑
n=1

Bn sinnx (4.1.1)

where

A0 =
1

2π

∫ π

−π
f(x)dx,

An =
1

π

∫ π

−π
f(x) cos(nx)dx,

Bn =
1

π

∫ π

−π
f(x) sin(nx)dx.

Here {cosmx, sinnx} , m, n ∈ Z, forms an orthonormal basis, satisfying

1

2π

∫ π

−π
cos(mx) cos(nx)dx = 0 (m 6= n),

1

2π

∫ π

−π
cos2(nx)dx = 1,

1

2π

∫ π

−π
cos(mx) sin(nx)dx = 0, ∀m,n. (4.1.2)

The vector space spanned by this basis is called a Hilbert space.

If f(x) is a periodic function over [−L,L], instead of [−π, π], the corresponding Fourier series is given

by

f(x) = A0 +
∞∑
n=1

An cos
nπx

L
+
∞∑
n=1

Bn sin
nπx

L
(4.1.3)
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where

A0 =
1

2L

∫ L

−L
f(x)dx,

An =
1

L

∫ L

−L
f(x) cos

nπx

L
dx,

Bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx.

If the function f(x) is defined on the interval [0, 2L], the above equations simply become

A0 =
1

2L

∫ 2L

0

f(x)dx,

An =
1

L

∫ 2L

0

f(x) cos
nπx

L
dx,

Bn =
1

L

∫ 2L

0

f(x) sin
nπx

L
dx.

In the light of the Euler formula,

eiθ = cos θ + i sin θ,

the expansion onto the basis {cosmx, sinnx} , m, n ∈ Z, can also be turned into an expansion onto

the basis {einx} , n ∈ Z. The exponential form of Fourier series with x is

f(x) =
∞∑

m=−∞

ame
imx, m ∈ Z, (4.1.4)

where am =
1

2π

∫ π

−π
f(x)e−imxdx. (4.1.5)

The Fourier transform, also called the Fourier integral, is mathematically stated as

f(t) =
1

2π

∫ ∞
−∞

G(ω)eiωtdω, (4.1.6)

G(ω) =

∫ ∞
−∞

f(t)e−iωtdt. (4.1.7)

where G(ω) is called the kernel function of the Fourier transform.

[Remark]: ω is a dual variable of t, and ωt guarantees to be dimension-less.
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4.1 Summary of formulae in Chapters 4 and 5

. Example 4.1. Find the Fourier series of the function f(x) defined by f(x) = x2 on the interval

[-2, 2].

Solution: Since this function is an even function on the given interval (where L = 2), it follows that

its Fourier series is a pure cosine series. Thus, its Fourier coefficients Bn vanish. In this case these

integrals become

A0 =
1

2L

∫ L

−L
f(x)dx =

1

L

∫ L

0

f(x)dx =
1

2

∫ 2

0

x2dx =
4

3

An =
1

L

∫ L

−L
f(x) cos

nπx

L
dx =

2

L

∫ L

0

f(x) cos
nπx

L
dx

=

∫ 2

0

x2 cos
nπx

2
dx = 16

(−1)n

n2π2
, ∀n ∈ Z, n ≥ 1.

From these coefficients we get the Fourier series of x2

f(x) = A0 +
∞∑
n=1

An cos
nπx

L
+
∞∑
n=1

Bn sin
nπx

L
=

4

3
+
∞∑
n=1

16
(−1)n

n2π2
cos

nπx

2

for −2 ≤ x ≤ 2. ♦

. Example 4.2. Let f(x) be a function of period 2π such that

f(x) =

{
0, when − π < x ≤ 0,

x, when 0 < x ≤ π.

Try to find the Fourier series for f(x) in the interval −π < x < π.

Solution:

A0 =
1

2π

∫ π

−π
f(x)dx =

1

2π

∫ 0

−π
f(x)dx+

1

2π

∫ π

0

f(x)dx

=
1

2π

∫ 0

−π
0dx+

1

2π

∫ π

0

xdx =
1

2π

[
x2

2

]π
0

=
1

2π

(
π2

2
− 0

)
=
π

4
,

An =
1

π

∫ π

−π
f(x) cosnxdx =

1

π

∫ 0

−π
f(x) cosnxdx+

1

π

∫ π

0

f(x) cosnxdx

=
1

π

∫ 0

−π
0 cosnxdx+

1

π

∫ π

0

x cosnxdx =
1

π

{[
x

sinnx

n

]π
0

−
∫ π

0

sinnx

n
dx

}
=

1

π

{(
π

sinnπ

n
− 0

)
− 1

n

[
−cosnx

n

]π
0

}
=

1

π

{
1

n2
[cosnx]π0

}
=

1

πn2
[(−1)n − 1] .

Obviously, this result depends on the parity of n, i.e., depends on n is an odd or even number.
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Similarly, we can compute Bn = − 1
n
(−1)n, ∀n ≥ 1. We now have

f(x) = A0 +
∞∑
n=1

(An cosnx+Bn sinnx)

=
π

4
+

1

π

∞∑
n=1

1

n2
{[(−1)n − 1] cosnx− (−1)nn sinnx} .

♦

. Example 4.3. Find the Fourier transform of the following function, in terms of the exponential

form:

f(x) =

{
x, when |x| ≤ 1,

0, when |x| > 1.

Solution:

G(k) =

∫ ∞
−∞

f(x)e−ikxdx =

∫ 1

−1
xe−ikxdx =

2i

k
cos k − 2i

k2
sin k.

Then the Fourier integral of f(x) is written as

f(x) =
1

2π

∫ ∞
−∞

G(k)eikxdk =
i

π

∫ ∞
−∞

k cos k − sin k

k2
eikxdk.

♦
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4.2 Time-domain descriptions

Considerable functions are able to be analysed by signal theory in terms of time and frequency, among

which a typical category are periodic signals. A periodic signal is a function which repeats itself every

T seconds, where T is called the period of the signal. Portions of such periodic signals are illustrated in

Figure 4.1. Achieving a clear analysis and understanding of the periodic signals is absolutely beneficial

for our further study of aperiodic and random signals.

Figure 4.1: Portions of three periodic waveforms. (a), (b) and (c) are of the periods T1, T2 and T3,

respectively.

A complete time-domain description of such a signal involves specifying its value precisely at every

instant of time. In some cases this may be done very simply using mathematical notation; for example,

waveform (a) of figure 4.1 is completely specified by the function

f(t) = A sin (ωt+ φ) . (4.2.8)

Waveform (b) is also quite simple to express mathematically, whereas (c) is obviously highly complex.

If it is desired to approximate the signal by a mathematical expression, such techniques as a polynomial

expansion, a Taylor series, or a Fourier series may be useful.

Revisit to Taylor series

The generic expression of a polynomial of order n reads

f(t) = a0 + a1t+ a2t
2 + a3t

3 + · · ·+ ant
n, a0, a1, · · · , an — coefficients. (4.2.9)
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It can be used to fit an actual curve at (n+ 1) arbitrary points, as shown in figure 4.2. The accuracy of

fitting generally improves as the number of polynomial terms increases. This polynomial approxima-

tion fits the actual waveform at a certain number of points. The alternative Taylor series approximation

provides a good fit to a smooth continuous waveform in the vicinity of one selected point; i.e., the

coefficients of the Taylor series are chosen to make the series and its derivatives agree with the actual

waveform at the point. The number of terms in the series determines to what order of derivative this

agreement extends, and hence the accuracy with which the series and the actual waveform agree in the

neighborhood of the point chosen. The general form of the Taylor series for approximating a function

f(t) about a point t = a is given by

f(t) ' f(a) +
df(a)

dt
(t− a) +

1

2!

d2f(a)

dt2
(t− a)2 + · · ·+ 1

n!

dnf(a)

dtn
(t− a)n. (4.2.10)

Figure 4.2: Time-domain approximation of a signal waveform in terms of a polynomial. The function

f(t) = (1 + t+ 0.5t2 − 2t3 + 0.5t4) is fit to a signal by five points.

A simple example is illustrated in figure 4.3, where the sinusoidal wave (sin t) is approximated about

t = π
6

by the first three terms of a polynomial. With the period of the wave chosen as 1 second, the

polynomial reads

0.5 + 5.44(t− 0.0833)− 19.7(t− 0.0833)2.
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Figure 4.3: Approximation of a signal by a Taylor series. The first three terms of the series have been

used to approximate the function (sin t) about the point t = π/6.

Advantage and disadvantage

As would be expected, the fit to the actual waveform is acceptable in the neighborhood of the point

chosen, but rapidly deteriorates to either side. The polynomial and Taylor series descriptions of a signal

waveform are therefore recommendable when one is concerned to achieve accuracy over a limited

region of the waveform. The accuracy usually decreases rapidly away from this region, although it

might be improved by adding more expansion terms. The approximations provided by such methods

are not particularly periodic in form, i.e., not in particular for describing repetitive signals.
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4.3 Frequency-domain descriptions

In contrast with the Taylor series approximation, the Fourier series approximation is well suitable for

describing periodic a signal in terms of sinusoidal functions which are periodic themselves.

A basic concept of frequency-domain analysis is that a waveform of any complexity may be approxi-

mated by the sum of a certain number of sinusoidal waveforms of suitable amplitude, periodicity and

relative phase. A continuous sinusoidal function (sinωt) is thought of as a single frequency wave

of frequency ω in the unit of radians/second. The frequency-domain description of a signal presents a

decomposition of a number of basic functions of such kind, which gives the method of Fourier analysis.

In figure 4.4 illustrated is a periodic wave built up from a number of sinusoidal waves. The periodic

waveform chosen is of ‘sawtooth’ form; its Fourier series is given by the summation of an infinite

number of sinusoidal waves:

f(t) = sinωt− 1

2
sin 2ωt+

1

3
sin 3ωt− 1

4
sin 4ωt+ · · · . (4.3.11)

The sawtooth wave contains the frequencies:

• ω — known as the fundamental component,

• 2ω — the second harmonic,

• 3ω — the third harmonic; and so on,

with the amplitudes decreasing according to the increasing frequencies.

The approximation shown in figure 4.4 is obtained through summing up the first 4 terms of the series.

If we wish to synthesize a sawtooth waveform perfectly, it is necessary to sum up an infinite number

of terms in the series — in particular, sudden changes of the waveform are produced by very high

frequency terms.

Frequency spectrum

An alternative way to graphically give the frequency-domain description for a sawtooth waveform is

the so-called frequency spectrum, in the space of frequency. This is shown in figure 4.5, where the

wave is consisted of a sinusoidal wave with frequency ω1 and amplitude 1, a sinusoidal wave owith

frequency 2ω1 and amplitude 1
2
, a sinusoidal wave with frequency 3ω1 and amplitude 1

3
, and so forth.

A important reason why sinusoidal functions are so crucial in signal analysis is that they occur widely

in our physical world — e.g., simple harmonic motion, vibrating strings and structures, wave motion,

alternating electrical current, etc..
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Figure 4.4: Synthesis of a periodic signal of ‘sawtooth’ form by the addition of a number of sinusoidal

functions.
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Figure 4.5: The frequency spectrum of the sawtooth wave illustrated in Figure 4.4.

+ [Aside]:

Signal analysis in sinusoidal terms is of practical importance since the sinusoidal functions carry substantial

physical meaning. A typical demonstration is the following experiment of optical Fourier transform, where a

filtering in the frequency space is performed.

Figure 4.6: Optical Fourier transform: The region outside the Lens 1 and 2 is our real space; the

region in between is the frequency space. The light sending from the object travels to Lens 1 and then

is Fourier transformed according to frequency. On the screen there are filtering holes which block the

light of some particular frequencies. Then the remaining light keeps traveling to Lens 2 and then forms

the image, after undergoing an inverse Fourier transform.
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Usually a signal is composed of low- and high-frequency components, as shown in Figure 4.7.

Figure 4.7: A square wave signal is composed of low-frequency and high-frequency components.

Then an original image may be turned into different images when filtering off the high-frequency components

or the low-frequency components, as shown in Figure 4.8.

Figure 4.8: The left image is an original image. It is turned into the middle image when filtering off the

high-frequency components, i.e., letting the low-ones pass through; it is turned into the right image

when filtering off the low-frequency components, i.e., letting the high-ones pass through.

Generally speaking, low-frequency components are responsible for the coarse sketch of the image, while high-

frequency ones are for the sharp details of the image. In image processing this is called an adjustment of the

contrast.

,
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4.4 Orthogonal functions

4.4.1 Vectors and signals

A discussion of orthogonal functions for describing signals may be introduced by considering the

analogy between signals and vectors. A vector is specified both by its magnitude and direction, familiar

examples being force and velocity. Consider a vector v in a two-dimensional space as shown in figure

4.9. Let and v1 and and v2 be two orthogonal vectors in the space. Geometrically, the component of v

in the direction of v1 is obtained via the construction:

v = C1v1 + ve, i.e., ve = v − C1v1. (4.4.12)

Figure 4.9: Let v be a vector in a two -dimensional space, which is endowed with two orthogonal

vectors v1 and v2. If we use the projection of v onto v1 (denoted as C1v1) to approximate v, then the

error is given by the component of v perpendicular to v1 (denoted as ve). Namely, v ≈ C1v1, with

error ve. Obviously, ve is parallel to v2.

Usually we can use the vector projection of v onto the direction of v1 (i.e., v̂1) to approximate v, then

the corresponding error is ve (e standing for error). Let C1v1 denote the component of vector v in the

direction of v1, where C1 is chosen to make the error vector as small as possible. Obviously the error

takes the minimum when ve is perpendicular to v1 and parallel to v2. It is seen,

• if ve is zero and C1 = 1, then v and v1 are identical in both magnitude and direction.

• if C1 is zero, then the projection of v onto v1 is zero. They are said to be orthogonal. (4.4.13)

The above idea can be extended to the study of signals. Suppose we wish to approximate a signal f(t)
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4.4 Orthogonal functions

by another signal f1(t) over a certain interval ta < t < tb. Using the above idea we have

f(t) ≈ C1f1(t), ta < t < tb, (4.4.14)

with an error

fe(t) = f(t)− C1f1(t). (4.4.15)

If regarding f(t) as the vector v, f1(t) as v1 and fe(t) as ve, then according to Figure 4.9 we know

|ve| takes its minimum when

C1v1 = (v · v̂1) v̂1 =
v · v1

|v1|2
v1, i.e., C1 =

v · v1

v1 · v1

, (4.4.16)

with |v1|2 = v1 ·v1. In our present case, let us use integration to realize the inner products above, i.e.,

v · v1 =

∫ tb

ta

f(t)f1(t)dt, v1 · v1 =

∫ tb

ta

f 2
1 (t)dt. (4.4.17)

Thus,

C1 =

∫ tb
ta
f(t)f1(t)dt∫ tb
ta
f 2
1 (t)dt

. (4.4.18)

+ [Aside]:

Another proof of eq.(4.4.18): Let us try to minimize the function fe(t). It should be noticed that, if we directly

compute the average value of fe(t) over [ta, tb], denoted as ε, in the following way:

ε
?
=

1

tb − ta

∫ tb

ta

fe(t)dt =
1

tb − ta

∫ tb

ta

[f(t)− C1f1(t)] dt, (4.4.19)

then a critical difficulty will emerge that the positive and negative errors occurring at different instants would

tend to cancel each other. This difficulty is avoidable if we choose to minimize the average squared-error f2e (t)

rather than the error itself, i.e.,

ε =
1

tb − ta

∫ tb

ta

f2e (t)dt =
1

tb − ta

∫ tb

ta

[f(t)− C1f1(t)]
2 dt. (4.4.20)

Then, in order to find the minimum value of ε let us differentiate eq.(4.4.20) with respect to C1 and put the

resulting expression equal to zero:

d

dC1

{
1

tb − ta

∫ tb

ta

[f(t)− C1f1(t)]
2 dt

}
= 0. (4.4.21)

Expanding the bracket and changing the order of integration and differentiation, we have

1

tb − ta

[∫ tb

ta

d

dC1
f2(t)dt− 2

∫ tb

ta

f(t)f1(t)dt+ 2C1

∫ tb

ta

f21 (t)dt

]
= 0. (4.4.22)
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The first integral vanishes since f1(t) is not a function of C1. Thus (4.4.22) finally re-produces eq.(4.4.18):

C1 =

∫ tb
ta
f(t)f1(t)dt∫ tb
ta
f21 (t)dt

. (4.4.23)

Special cases, in agreement to the above discussions (4.4.13):

• When v ·v1 =
∫ tb
ta
f(t)f1(t)dt = 0, we have C1 = 0, which means f(t) and f1(t) are orthogonal to each

other.

• When v · v1 = v1 · v1, we have C1 = 1, that is, v = v1, i.e., f(t) = f1(t).

,

. Example 4.4. Suppose we wish to approximate the following square wave defined in the interval

0 < t < 2π/ω, as shown in figure 4.10:

f(t) =

{
1, for 0 < t ≤ π

ω
,

−1, for π
ω
< t < 2π

ω
.

ω — constant, (4.4.24)

Figure 4.10: A square wave and its approximation by a sine wave of the same period.

We use the following sinusoidal wave to do the approximation, which has the same period as f(t),

f1(t) = sinωt, 0 < t <
2π

ω
. (4.4.25)

The value of C1, which minimizes the mean square error between the square wave and its approxima-

tion, is therefore given by

C1 =

∫ 2π
ω

0
f(t) sinωt dt∫ 2π
ω

0
sin2 ωt dt

=

∫ π
ω

0
sinωt dt+

∫ 2π
ω
π
ω

(− sinωt) dt
π
ω

=
4

π
. (4.4.26)
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This means

f1(t) =
4

π
sinωt (4.4.27)

is the approximation of the square wave f(t) which has the minimum mean square error. f1(t) is also

shown in figure 4.10, superimposed upon the square wave f(t).

♦

4.4.2 Signal description by sets of orthogonal functions

If we wish to go a step further by improving the approximation, we need to appeal to other orthogonal

functions to perform higher order approximation. Once again let us pay a revisit to vectors and consider

the 3-dimensional space as shown in Figure 4.11

Figure 4.11: Computation of error in three dimensions. v is the original vector. In the space there are

three orthogonal vectors, v1, v2 and v3. C1v1 is the projection of v onto v1, C2v2 is that onto v2, and

the error is ve = v − C1v1 − C2v2.

v is the original vector; we use v1 and v2 to approximate v.

• The fist step is to use the projection of v onto v1 to approximate v, v ≈ C1v1, with error

ve = v − C1v1. (4.4.28)

We take

ve ⊥ v1, i.e., C1 =
v · v1

v1 · v1

(4.4.29)

to guarantee the minimum evaluation of the error.
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• The second step is to use the projection of (v − C1v1) onto v2 to approximate (v − C1v1),

where v2 is a vector orthogonal to v1,

v1 · v2 = 0. (4.4.30)

Let us use C2v2 to denote this projection. Then, as usual, we take

ve = (v − C1v1)− C2v2 (4.4.31)

to play the role of error, and require

ve ⊥ v2, i.e., C2 =
v · v2

v2 · v2

(4.4.32)

to guarantee the minimum evaluation of ve.

Obviously, ve is in the direction of v3 that is perpendicular to both v1 and v2.

Then, let us use f(t), f1(t) and f2(t) to replace v, v1 and v2. The inner products v · v1, v · v2 and

v1 · v2 are realized by, respectively,∫ tb

ta

f(t)f1(t)dt,

∫ tb

ta

f(t)f2(t)dt,

∫ tb

ta

f1(t)f2(t)dt, (4.4.33)

where f1 and f2 are chosen to be orthogonal,∫ tb

ta

f1(t)f2(t)dt = 0. (4.4.34)

Thus, we have the error

fe = f(t)− C1f1(t)− C2f2(t), (4.4.35)

where C1 has been obtained as (4.4.18), and C2 is given by

C2 =

∫ tb
ta
f(t)f2(t)dt∫ tb
ta
f 2
2 (t)dt

. (4.4.36)

+ [Aside]:

You may doubt if the expression for C1, eq.(4.4.18), still holds in this 3-dimensional case. The answer is YES,

as confirmed in the following.

For eq.(4.4.35), let us mimic eq.(4.4.20) to minimize the average squared-error

ε = f2e =
1

t2 − t1

∫ tb

ta

[f(t)− C1f1(t)− C2f2(t)]
2 dt, (4.4.37)
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by doing the partial differentiation with respect toC1
*1. By changing the order of differentiation and integration,

we have the local extremum condition

∂ε

∂C1
=

1

tb − ta

[∫ tb

ta

∂

∂C1
f2(t)dt+

∫ t2

t1

2C1f
2
1 (t)dt+

∫ tb

ta

∂

∂C1
C2
2f

2
2 (t)dt (4.4.38)

−
∫ tb

ta

2f(t)f1(t)dt−
∫ tb

ta

∂

∂C1
2f(t)C2f2(t)dt+

∫ tb

ta

2f1(t)C2f2(t)dt

]
= 0.

The first, third and fifth terms vanish trivially, since f1(t), f2(t) and f3(t) are not functions of C1. The sixth

term is also zero because f1(t) and f2(t) are set to be orthogonal in the interval ta to tb. Therefore, we arrive at

the same result as before,

C1 =

∫ tb
ta
f(t)f1(t)dt∫ tb
ta
f21 (t)dt

. (4.4.39)

The above proof shows us a fact that incorporating an additional term in f2(t) does not require modifying the

coefficient C1, as long as f2(t) is orthogonal to f1(t) in the chosen time interval. Similarly it is not hard to prove

that the value of C2 does not change if the signal is approximated by f2(t) alone. This conclusion is crucial.

,

The above result can be extended to more general cases, i.e., a larger set of orthogonal functions for

the purpose of approximation. The use of orthogonal functions for signal description is analogous to

the use of mutually perpendicular vectors for describing a vector in a higher dimensional space.

Consider a set {f1(t), f2(t), · · · , fn(t), · · ·}, where f1(t), f2(t), · · · , fn(t), · · · are infinitely many or-

thogonal functions over an interval ta < t < tb:∫ tb

ta

fi(t)fj(t)dt = 0, i 6= j, fi, fj 6= 0. (4.4.40)

Then a function/signal can be expressed as a series

f(t) = C1f1(t) + C2f2(t) + · · ·+ Cnfn(t) + · · · , (4.4.41)

where the expansion coefficients

Ci =

∫ tb
ta
f(t)fi(t)dt∫ tb
ta
f 2
i (t)dt

, i = 1, 2, · · · , n, · · · . (4.4.42)

This result will have direct application in the coming Section 4.5.

*1We will have the chance to learn the knowledge of Partial Differentiation in this semester. See Ping Yanru, Yao Hailou:

Advanced Mathematics (Bilingual Course, II), Beijing University of Technology Press, 2015. Chapter 9.
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4.4.3 Typical examples of orthogonal functions

Sinusoidal functions

The first example for orthogonal functions is, as mentioned in Section 4.3, sinusoidal waves of different

frequencies. Generally speaking, the following composite set of functions form an orthogonal set over

an arbitrary interval ta < t < ta + 2π
ω

(— i.e., any interval equal to a period of the lowest frequency

wave sinωt or cosωt),

{sinnωt, cosnωt, n ∈ Z, n ≥ 1} . (4.4.43)

It is noted that when n = 0, sinnωt = 0 and cosnωt = 1, hence the complete orthogonal set may also

take in the n = 0 cases and comprises

{1, cosωt, cos 2ωt, · · · , sinωt, sin 2ωt, · · ·} . (4.4.44)

Sinusoidal set of functions have wide applications in science and technology.

Orthogonal polynomial functions

Another example is the so-called Legendre polynomials, which is a set of mutually orthogonal poly-

nomial functions over the interval −1 < t < 1. Its generating function is given by

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n, n ∈ Z, n ≥ 0. (4.4.45)

Explicitly {Pn(x)} is given by

P0(t) = 1, P1(t) = t, P2(t) =

(
3

2
t2 − 1

2

)
, P3(t) =

(
5

2
t3 − 3

2
t

)
, · · · . (4.4.46)

Similar examples of orthogonal polynomials include the Chebyshev polynomials, Walsh polynomials

and so forth.

In a word, there are a number of orthogonal functions available for approximate description of signal

waveforms. In our course we will focus on the sinusoidal function sets, eq.(4.4.43).
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4.5 Fourier series

In 1822, Joseph Fourier published his seminal work in which he evolved the series bearing his name.

Originally applied to the analysis of heat flow, the series has since been used in many branches of

applied science, and constitutes one of the principal tools of signal analysis. A basic idea of this

theory is that a complex periodic waveform may be analyzed with a number of harmonically-related

sinusoidal and cosinusoidal waves serving as an orthogonal basis.

Let f(t) be a periodic function/signal with period T . f(t) can be expressed by a series, in the light of

(4.4.41):

f(t) = A0 +
∞∑
n=1

An cosnωt+
∞∑
n=1

Bn sinnωt, with ω =
2π

T
. (4.5.47)

f(t) is considered to be made up by the sum of

• a steady function A0, and

• a number of sinusoidal and cosinusoidal waves of different frequencies.

The lowest of these frequencies is ω (radian per second) and is called the fundamental; waves of

this frequency have a period equal to that of the signal f(t). Frequency 2ω is called the second

harmonic, 3ω the third harmonic, and so on.

Certain restrictions, known as the Dirichlet condition, are placed upon f(t) for its validity; fortunately,

these conditions do not exclude the signal waveforms of practical interest.

4.5.1 Evaluation of coefficients

In the light of the general expression (4.4.42) for expansion coefficients, and writing (ωt) as x for

convenience, the coefficients A0, An and Bn have the following evaluations, respectively:

A0 =

∫ π
−π f(x)1dx∫ π
−π 1dx

=
1

2π

∫ π

−π
f(x)dx, (4.5.48)

An =

∫ π
−π f(x) cosnxdx∫ π
−π cos2 nxdx

=
1

π

∫ π

−π
f(x) cosnxdx, (4.5.49)

Bn =

∫ π
−π f(x) sinnxdx∫ π
−π sin2 nxdx

=
1

π

∫ π

−π
f(x) sinnxdx. (4.5.50)

Discussion on parity: Many waveforms of practical interest are pure even or odd functions of time,

even function, f(x) = f(−x); odd function, f(x) = −f(−x).
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• If f(x) is an even function, then A0, the integration of f(x) over [−π, π] does not vanish, where

[−π, π] is symmetric about t = 0. Meanwhile, f(x) sinnx is also odd since sinnx is odd.

Thus the integrand for every Bn is odd, and its integration over [−π, π] vanishes. Hence all the

coefficients Bn’s are zero; we are left with a series containing only the cosine functions, An’s.

• On the contrary, if f(x) is odd, then A0 will vanish trivially; and by similar arguments we know

the coefficients A’s must be zero too. We are left with sine functions, Bn’s, only.

+ [Aside]:

In some cases, for a function f(x) periodic on an interval [−L,L] instead of [−π, π], a simple change of variables

can be used: [−π, π] −→ [−L,L]. Thus

x −→ πx

L
, dx −→ πdx

L
. (4.5.51)

and

f(x) = A0 +

∞∑
n=1

An cos
nπx

L
+

∞∑
n=1

Bn sin
nπx

L
, (4.5.52)

where

A0 =
1

2L

∫ L

−L
f(x)dx, (4.5.53)

An =
1

L

∫ L

−L
f(x) · cos

nπx

L
dx, (4.5.54)

Bn =
1

L

∫ L

−L
f(x) · sin nπx

L
dx. (4.5.55)

If the function is instead defined on the interval [0, 2L], the above equations simply become

A0 =
1

2L

∫ 2L

0
f(x)dx, (4.5.56)

An =
1

L

∫ 2L

0
f(x) · cos

nπx

L
dx, (4.5.57)

Bn =
1

L

∫ 2L

0
f(x) · sin nπx

L
dx. (4.5.58)

In fact, for f(x) periodic with period 2L, any interval (x0, x0 + 2L) can be used, with the choice being one of

convenience or personal preference.

,
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. Example 4.5. Let us try to evaluate the coefficients of the sawtooth wave illustrated in figure 4.4.

Noticing the f(t) in this case is an odd function, we have

An = 0, Bn 6= 0, n = 1, 2, 3, · · · .

The waveform is given by f(t) = ωt
2

over the interval −π
ω
< t < π

ω
. Replacing ωt with x for

convenience, and changing the limits to x = ±π, we have

A0 =
1

2π

∫ π

−π
f(x)dx =

1

2π

∫ π

−π

x

2
dx =

1

8π

[
x2
]π
−π = 0,

and

Bn =
1

π

∫ π

−π
f(x) · sinnxdx =

1

π

∫ π

−π

x

2
· sinnxdx,

which is integrated by parts,

Bn =
1

2π

[
sinnx

n2
− x cosnx

n

]π
−π

=
1

πn2
(sinnπ − nπ cosnπ) .

If n is an odd integer, sinnπ = 0 and cosnπ = −1, we have Bn = 1/n. If n is even, sinnπ = 0 and

cosnπ = 1, we have Bn = −1/n. Thus

B1 = 1, B2 = −1

2
, B3 =

1

3
, B4 = −1

4
, · · · ,

which exactly reproduces the Fourier expansion (4.3.11) of the sawtooth wave

f(t) = sinωt− 1

2
sin 2ωt+

1

3
sin 3ωt− 1

4
sin 4ωt+ · · · (4.5.59)

[Remark]: A0 is zero not because of the parity; it is due to the fact that the integral of f(t) over a

complete period is zero — in other words, it has a zero average.

♦
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4.5.2 Choice of time origin and waveform power (Optional)

As shown in the last subsection, if a studied waveform is either an even or odd function, the calculation of its

Fourier coefficientsA0,An andBn becomes much simpler. To make this happen, a wise choice is to (re-)arrange

the time origin, i.e., to use translation of the integration variable t to produce even/odd functions.

For example, Figure 4.12 shows three versions of a square wave which differ only in their time origin.

• Wave (b) is an odd function, anti-symmetric about t = 0. It is seen in eq.(4.4.27) that its fundamental

component is 4
π sinωt.

• Wave (a) is identical except that it is an even function with a fundamental equal to 4
π cosωt.

This shift of time origin therefore merely has the effect of converting a Fourier series containing only sine

terms into that containing only cosine terms. Its amplitude of a component is, as expect, unaltered at any

frequency.

• Wave (c) is however more complicated since the square wave is neither even nor odd; expectedly it include

both sine and cosine terms in its Fourier series.

Figure 4.12: Three square waves, which are essentially identical, but apart from a time-shift.

The clue to the relationship between the values of the various coefficients in case (c) and those in (a) and (b)

lies in the average power of the waveform, a concept familiar to electrical engineers. Suppose we find when we
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4.5 Fourier series

analyze the waveform of Figure 4.12(c) that there are fundamental components

A1 cosωt and B1 sinωt

If the component A1 cosω1t represents a voltage applied to a resistor of value 1 Ohm, then the average power P

dissipated by it in the resistor (recall that Power = Voltage2/Resistance) over one complete period will be:

P =
1

2π

∫ π

−π
(A1 cosx)2dx =

A2
1

2
(4.5.60)

where x = ω1t. In other words the mean power dissipated is equal to the average squared value of the voltage

waveform. Similarly, the average squared value of the waveB1 sinω1t over one period isB2
1/2. The total power

represented by the two fundamental components together is thus 1
2

(
A2

1 +B2
1

)
. It is clear however that this value

will be the same for all three examples of the square wave of Figure 4.12, since the average power represented

by a waveform is not altered by a mere shift in time origin. Since for waveform (a) we have already found that

A1 = 4/π and B1 = 0, and for waveform (b) B1 = 4/π and A1 = 0, we conclude that for any other waveform

such as (c) (
A2

1 +B2
1

2

)
=

(
4

π

)2 1

2
(4.5.61)

thus (
A2

1 +B2
1

)
=

(
4

π

)2

(4.5.62)

Hence as the time origin of a waveform is shifted, the various sine and cosine coefficients of its Fourier series

will change, but the sum of the squares of any two coefficients An and Bn will remain constant.

The above ideas lead naturally to an alternative trigonometric form for the Fourier series. If the two fundamental

components of a waveform are A1 cosω1t and B1 sinω1t their sum may be expressed in an alternative form

using trigonometric identities

A1 cosωt+B1 sinω1t =
√
A2

1 +B2
1 cos

(
ωt− tan−1

B1

A1

)
=

√
A2

1 +B2
1 sin

(
ωt+ tan−1

A1

B1

)
. (4.5.63)

Thus the sine and cosine components at a particular frequency are expressed as a single cosine or sine wave

together with a phase shift. This equivalence is illustrated in Figure 4.13. If this procedure is applied to all

harmonic components of the Fourier series, we get the alternative forms

f(t) = A0 +

∞∑
n=1

Cn cos(nωt− φn), or f(t) = A0 +

∞∑
n=1

Cn sin(nωt+ θn). (4.5.64)

where

Cn =
√
A2
n +B2

n, φn = tan−1
Bn
An

, θn = tan−1
An
Bn

. (4.5.65)

65
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Finally, we note that since the mean power represented by any component wave is

A2
n +B2

n

2
=
C2
n

2
(4.5.66)

and the power represented by the term A0 is simply A2
0, the total average waveform power is equal to

P = A2
0 +

1

2

∞∑
n=1

C2
n (4.5.67)

Figure 4.13: The addition of a sine and a cosine function to give a wave of the same frequency with a

phase angle θ.

But P may also be expressed as the average value over one period of [f(t)]2, using again the convention that

f(t) is considered to represent a voltage waveform applied across a 1 Ohm resistor. Hence

P = A2
0 +

1

2

∞∑
n=1

C2
n =

1

T

∫ T/2

−T/2
[f(t)]2 dt. (4.5.68)

This result is a version of a more general one known as Parseval’s theorem, and shows that the total waveform

power is equal to the sum of the powers represented by its individual Fourier components. It is, however,

important to note that this is only true because the various component waves are drawn from an orthogonal set.

This may be shown by considering a wave f(t) which contains just the two components

An cosnωt+Bm sinmωt. (4.5.69)

The average total waveform power is equal to the average value taken over one period of (An cosnωt +

Bm sinmωt)2 = (An cosnωt)2 + (Bm sinmωt)2 + 2AnBm cosnωt · cosnωt. The average value of the last
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4.5 Fourier series

term(over one period) is zero for any values of m and n, because cosnωt and sinmωt are orthogonal functions.

Hence the total average waveform power is
A2
n +B2

m

2
. (4.5.70)

and is equal to the sum of the powers in the two individual components. A similar result is obtained for more

complex waveforms having more Fourier components, since they are all members of an orthogonal set.

Some general comments

It is often possible to anticipate the main characteristics of a periodic waveform just from a visual inspection. For

example, a signal which exhibits sudden changes or discontinuities such as that of Figure 4.4 must be expected to

be rich in the higher-order harmonics, because it is only possible to build up such a waveform using component

waves which are themselves changing rapidly(that is, high frequency waves).
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Chapter 5 Fourier series and
transformations (II) — Aperiodic
functions

In eq.(4.3.11) of the previous chapter it was shown how a periodic signal may be expressed as the

sum of a set of sinusoidal waves which are harmonically related (fundamental, second harmonic, third

harmonic, etc.). The spectrum of such a signal consists of a number of discrete frequencies known as

a line spectrum. Although the analysis of periodic signals gives results of much practical interest, the

great majority of signals are more general beyond that type. Firstly, there are signals/functions which

may not generally be assumed to exist for all time; e.g., the Heaviside step function,

H(x) =

{
0, when x < 0,

1, when x ≥ 0.
(5.0.1)

Secondly, there is an important type of signal waveforms which are simply not repetitive in nature and

cannot therefore be represented by Fourier series containing a number of harmonically-related discrete

frequencies. Fortunately, however, it is possible to generalize the knowledge of discrete Fouries series

to continuous frequency spectra to analyze these signals. In the following the exponential form is

particularly helpful for the derivation of frequency spectra of aperiodic signals.

5.1 Exponential form of Fourier series

5.1.1 Discrete exponential form of Fourier series

The Fourier expansion of a function f(t) with respect to discrete sine and cosine functions is given by

eq.(4.5.47),

f(t) = A0 +
∞∑
n=1

An cosnx+
∞∑
n=1

Bn sinnx, with x = ωt, ω =
2π

T
, (5.1.2)
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where the coeffeicients A0, An and Bn are given by eqs.(4.5.48), (4.5.49) and (4.5.50).

Given the Euler formula (3.1.1), we have the exponential expressions for the sine and cosine functions,

eq.(3.1.6):

cos θ =
1

2

(
eiθ + e−iθ

)
, sin θ =

1

2i

(
eiθ − e−iθ

)
. (5.1.3)

Substituting (5.1.3) into (5.1.2), we have

f(x) = A0 +
∞∑
n=1

An
einx + e−inx

2
−
∞∑
n=1

iBn
einx − e−inx

2

= A0 +
∞∑
n=1

1

2
(An − iBn) einx +

∞∑
n=1

1

2

[
A−(−n) + iB−(−n)

]
ei(−n)x (letting m = −n)

= A0 +
∞∑
n=1

1

2
(An − iBn) einx +

−1∑
m=−∞

1

2
(A−m + iB−m) eimx, x = ωt. (5.1.4)

Introducing new coefficients

am =


1
2

(A−m + iB−m) , when m ≤ −1,

A0, when m = 0,
1
2

(Am − iBm) , when m ≥ 1,

m ∈ Z, (5.1.5)

the function f(x) can be re-expressed as

f(x) =
∞∑

m=−∞

ame
imx (5.1.6)

= · · ·+ a−2e
−i2x + a−1e

−ix + a0 + a1e
ix + a2e

i2x + · · · , m ∈ Z.

It is addressed that, although the introduction of complex coefficients is somehow not easy to accept at

first, one may recollect the memory

• the real part of a pair of coefficients denotes the magnitude of the cosine wave of the relevant

frequency, and

• the imaginary part denotes the magnitude of the sine wave.

If a particular pair of coefficients an and a−n are real, the component at the frequency nω is simply a

cosine; if an and a−n are purely imaginary, the component is just a sine; and if, as is the general case,

an and a−n are complex, both a cosine and a sine term are present.

+ [Aside]:

The use of the exponential form of the Fourier series gives rise to a further notion which is often found difficult,

that of negative frequency. Of course, a cosine A cosωt is a wave of a single frequency ω radians/second, and
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may be represented by a single line of height A in a spectral diagram. If however we are using the exponential

form of the Fourier series and are discussing a waveform in terms of its exponential components, we use the

identity

A cosωt =
A

2
(eiωt + e−iωt) (5.1.7)

Plotting the exponential components on a spectral diagram, we now consider the term Aeiωt/2 to be represented

by a line of height A/2 at a frequency ω, and the term Ae−iωt/2 = Aej(−ω)t/2 to be represented by a line

of height A/2 at a frequency −ω. Thus our frequency scale is now formally extended to include negative as

well as positive frequencies, and a cosine component in a signal waveform gives rise to two spectral lines.

Similarly, a sine component gives rise to two equal but opposite imaginary exponential components, which

cannot of course be plotted on the same spectral diagram as the real exponential components representing the

cosines. So a complete spectral description of a signal waveform will normally involve two separate diagrams,

one representing real exponential terms (cosines) and the other representing imaginary terms (sines), as shown

in Figure 5.1. It is therefore important to remember that the introduction of negative frequencies implies that

sines and cosines are being represented in exponential form.

Figure 5.1: Exponential representation of a Fourier Series: (a) Real parts of the exponential coeffi-

cients representing cosine components, and (b) imaginary parts representing sine components.

,

5.1.2 Coefficients expressed in exponential form

In eq.(5.1.5) we obtain the expression for am for the cases of m > 0, m < 0 and m = 0, where m ∈ Z.

Given thatA0, An andBn have their definitions in (4.5.48), (4.5.49) and (4.5.50), respectively, we have
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the following computations:

• When m ≤ −1,

am =
1

2
(A−m + iB−m) =

1

2π

∫ π

−π
f(x) cos(−mx)dx+

1

2π

∫ π

−π
f(x)i sin(−mx)dx

=
1

2π

∫ π

−π
f(t)e−imxdx. (5.1.8)

• When m = 0,

am = A0 =

∫ π

−π
f(x)dx =

∫ π

−π
f(x)ei0xdx. (5.1.9)

• When m ≥ 1,

am =
1

2
(Am − iBm) =

1

2π

∫ π

−π
f(x) cos(mx)dx− 1

2π

∫ π

−π
f(x)i sin(mx)dx

=
1

2π

∫ π

−π
f(x)e−imxdx. (5.1.10)

Summarizing (5.1.8), (5.1.9) and (5.1.10) we achieve a universal expression

am =
1

2π

∫ π

−π
f(x)e−imxdx, m ∈ Z, x = ωt. (5.1.11)

+ [Aside]:

From discrete pulse spectra to continuous sinusoidal wave acting as the envelope of the pulse spectra:

We now turn our attention to the analysis of the recurrent pulse waveform of Figure 5.1.2(a), This wave is

important for two main reasons: firstly, it is of great practical interest because similar waveforms occur widely

in such devices as digital computers and communication systems; and secondly it is of analytic interest because

it provides a good starting point for a discussion of the Fourier transform.
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Figure 5.2: (a) A repetitive pulse waveform, and its real exponential Fourier coefficients for (b) K = 3,

and (c) K = 5

For convenience we will assume (as in the diagram) that the period of the waveform is K times as large as the

pulse duration. If we consider the period of the waveform between x = ±π, it is clear that a finite contribution

to the integral occurs only in the interval x = ±π/K, where the pulse height is unity. Hence

am =
1

2π

∫ π/K

−π/K
e−imxdx, x = ωt. (5.1.12)

If m = 0, a0 = 1
2π

(
π
K + π

K

)
= 1

K ; if m 6= 0,

am =
1

−im2π

[
e−imx

]π/K
−π/K =

1

mπ

eimπ/K − e−imπ/K

2i
=

1

K

sin(mπ/K)

mπ/K
(5.1.13)

Conversely, the recurrent pulse may be synthesised by summing components as follows

f(x) =

∞∑
m=−∞

1

K

sin(mπ/K)

mπ/K
· eimπ/K (5.1.14)

Figure (b) and (c) illustrate this result for K = 3 andK = 5. AsK increases, the harmonic terms become closer

spaced under the (sinx/x) envelope and they reduce correspondingly in absolute size; the actual frequency

represented by any line depends on the absolute period of the time function. If K becomes very large, the pulse

duration is very small in comparison with the waveform period. The spectrum consists of a correspondingly

large number of spectral lines, very closely bunched and of vanishingly small amplitude. In the limit the lines

become so close that we call the spectrum continuous; then we are led with little difficulty to the concept of

Fourier transform.

,
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5.2 Fourier transforms

5.2.1 Derivation of Fourier integral: Treatment from discrete to continuous

In the last Section 5.1 it is shown that a discrete Fourier series is suitable for describing a periodic

signal (which repeats itself periodically). In this section we will show that, letting the period T go

to infinity, i.e., letting ω = 2π
T

go to 0, a discrete Fourier series is turned into a continuous Fourier

integral. Since T → ∞ implies an aperiodic signal, the Fourier integral is suitable for describing a

generic function no matter it is periodic or aperiodic. The reader is strongly suggested to pay close

attention to the technique in this section of turning a discrete summation into a continuous integral,

which is very useful and popular in practice in science and technology.

Let us start from the exponential forms of the Fourier series, eq.(5.1.6), and the coefficients, (5.1.11):

f(x) =
∞∑

m=−∞

ame
imx, (5.2.15)

with am =
1

2π

∫ π

−π
f(x)e−imxdx, m ∈ Z, x = ωt. (5.2.16)

Keeping in mind ω = 2π
T

, we have

f(t) =
∞∑

m=−∞

ame
imωt, (5.2.17)

with am =
1

2π

∫ π

−π
f(t)e−imωtd(ωt) =

1

T

∫ T
2

−T
2

f(t)e−imωtdt. (5.2.18)

Defining a function

Gm =

∫ T
2

−T
2

f(t)e−imωtdt, (5.2.19)

we have

am =
Gm

T
, (5.2.20)

f(t) =
∞∑

m=−∞

Gm
eimωt

T
=

1

2π

∞∑
m=−∞

Gme
imωtω. (5.2.21)

Now we are at stage of turning the discrete series into a continuous integral.

Consider the case that T � 1, i.e., ω � 1, then one can do the following replacements:

ω =⇒ ∆ω, mω =⇒ ω. (5.2.22)
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Under the limitation behavior ∆ω → 0, the ∆ω becomes a differential dω; and Gm, that depends on

the discrete counting ofm, becomes a function of the continuous variable ω : G(ω). Then eqs.(5.2.21)

and (5.2.19) become the integrals

f(t) =
1

2π

∫ ∞
−∞

G(ω)eiωtdω, (5.2.23)

with G(ω) =

∫ ∞
−∞

f(t)e−iωtdt, (5.2.24)

where the upper and lower bounds of G(ω) has the limits:
∫ T

2

−T
2

→
∫∞
−∞, when T →∞.

[Remarks]:

• Eq.(5.2.23) is the desired Fourier transform (i.e., Fourier integral) of the function f(t), with

G(ω) of (5.2.24) called the kernel of the transform.

In literature people use G(ω) ≡ F [f(t)] to denote Fourier transform.

• G(ω) and f(t) are in a dual relation; meanwhile, the frequency ω (in the unit Hz = 1
second ) and

the time t (in the unit of second) are a pair of dual variables, no forgetting ωt is dimensionless.

(Recall Figure 4.6.)

• It is addressed that in the derivation of the formulae the period T has the limitation behavior

T → ∞, which means the Fourier integration method is suitable to describe a general function,

no matter it is periodic or aperiodic.

• Are eqs.(5.2.23) and (5.2.24) correct? Let us have a quick double check.

Substituting (5.2.24) into (5.2.23), we have

RHS =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

f(t′)e−iωt
′
dt′
]
eiωtdω (swapping the order of the integrals)

=

∫ ∞
−∞

dt′f(t′)

[
1

2π

∫ ∞
−∞

eiω(t−t
′)dω

]
=

∫ ∞
−∞

dt′f(t′)δ(t− t′) = f(t) = LHS, (5.2.25)

where δ(x) is the so-called Dirac δ-function defined as

δ(x) =

{
0, when x 6= 0,

∞, when x = 0,
(5.2.26)

satisfying
∫ ∞
−∞

δ(x)dx = 1. (5.2.27)
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δ-function has a property ∫ ∞
−∞

f(x′)δ(x− x′)dx′ = f(x). (5.2.28)

The Fourier transform of δ-function reads

δ(t) =

∫ ∞
−∞

eiωtdω. (5.2.29)

• Usually the following variable replacements apply:

t→ x, ω → k, (5.2.30)

such that a Fourier transform G(k) ≡ F [f(x)] is obtained,

f(x) =
1

2π

∫ ∞
−∞

G(k) · eikxdk, (5.2.31)

G(k) =

∫ ∞
−∞

f(x)e−ikxdx. (5.2.32)

In this picture x carries the meaning of displacement (in the unit of meter), and k the meaning of

momentum (in the unit of meter
second ).*1 This is used to describe propagation of transverse waves

with given speed and shape.

*1Notice: Here the natural unit system applies, namely, c = h̄ = 1, where c as a velocity is in the unit meter
second , and h̄ as an

angular momentum in the unit meter2
second .
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5.2.2 Properties (Optional)

In this section some basic theorems/properties of Fourier transform are collected.

In the following the symbol F denotes an operation of Fourier transform. The constants α1, α2 ∈ R,

and the functions f1(x), f2(x) ∈ R with x ∈ R.

Theorem 5.1.

F [α1f1(x) + α2f2(x)] = α1F [f1(x)] + α2F [f2(x)]. (5.2.33)

Proof:

F [α1f1(x) + α2f2(x)] =

∫ ∞
−∞

[α1f1(x) + α2f2(x)]e−ikxdx

= α1

∫ ∞
−∞

f1(x)e−ikxdx+ α2

∫ ∞
−∞

f2(x)e−ikxdx

= α1F [f1(x)] + α2F [f2(x)].

Theorem 5.2.

F [f(x− x0)] = e−ikx0F [f(x)]. (5.2.34)

Proof:

F [f(x− x0)] =

∫ ∞
−∞

f(x− x0)e−ikxdx =

∫ ∞
−∞

f(x− x0)e−ik(x−x0)e−ikx0dx

= e−ikx0
∫ ∞
−∞

f(ξ)e−ikξdξ = e−ikx0F [f(x)],

where ξ = x− x0.
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Theorem 5.3.

F [f(x)eikx0 ] = G(k − k0). (5.2.35)

Proof:

F [f(x)eikx0 ] =

∫ ∞
−∞

f(x)e−i(k−k0)xdx = G(k − k0).

Theorem 5.4.

F [f(ax)] =
1

| a |
G

(
k

a

)
, (5.2.36)

where a 6= 0.

Proof: Here we use x′ = ax instead of x, when a > 0.

F [f(ax)] =

∫ ∞
−∞

f(ax)e−ikxdx =
1

a

∫ ∞
−∞

f(x′)e−i
k
a
x′dx′ =

1

| a |
G

(
k

a

)
,

when a < 0

F [f(ax)] =

∫ ∞
−∞

f(ax)e−ikxdx =
1

a

∫ −∞
∞

f(x′)e−i
k
a
x′dx′

=
1

−a

∫ ∞
−∞

f(x′)e−i
k
a
x′dx′ =

1

| a |
G

(
k

a

)
.

Theorem 5.5.

F [f ′(x)] = ikF [f(x)], (5.2.37)

F [f (n)(x)] = (ik)nF [f(x)], (5.2.38)

if | x |→ ∞ then f(x)→ 0.

Proof:

F [f ′(x)] =

∫ ∞
−∞

f ′(x)e−ikxdx = f(x)e−ikx
∣∣∣∣∞
−∞

+ ik

∫ ∞
−∞

f(x)e−ikxdx = ikF [f(x)].
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5.2 Fourier transforms

From F [f ′′(x)] = ikF [f ′(x)] = (ik)2F [f(x)], we have

F [f (n)(x)] = (ik)nF [f(x)].

Theorem 5.6.

F [f1(x) ∗ f2(x)] = F [f1(x)]F [f2(x)], (5.2.39)

where

f1(x) ∗ f2(x) ≡
∫ ∞
−∞

f1(x− ξ)f2(ξ)dξ. (5.2.40)

The function above is called the convolution of f1(x) and f2(x).

Proof:

F [f1(x) ∗ f2(x)] =

∫ ∞
−∞

dxe−ikx
∫ ∞
−∞

f1(x− ξ)f2(ξ)dξ

=

∫ ∞
−∞

dξf2(ξ)

∫ ∞
−∞

f1(x− ξ)e−ikxdx

=

∫ ∞
−∞

dξf2(ξ)e
−ikξ

∫ ∞
−∞

f1(x− ξ)e−ik(x−ξ)dx

= F [f1(x)]F [f2(x)].

[Summary of formulae]

F [α1f1(x) + α2f2(x)] = α1F [f1(x)] + α2F [f2(x)]

F [f(x− x0)] = e−ikx0F [f(x)]

F [f(x)eikx0 ] = G(k − k0)

F [f(ax)] =
1

| a |
G

(
k

a

)
F [f ′(x)] = ikF [f(x)]

F [f (n)(x)] = (ik)nF [f(x)]

F [f1(x) ∗ f2(x)] = F [f1(x)]F [f2(x)]

The asterisk(∗) denotes the convolution of f1(x) and f2(x).
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CHAP. 5 FOURIER SERIES AND TRANSFORMATIONS (II) — APERIODIC FUNCTIONS
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